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“Before what has been found can be used, before it can persuade skeptics,
influence policy, affect practice, it must be known. Someone must organize it,
integrate it, extract the message. A hundred dissertations are mute. Someone

must read them and discover what they say” (Gene V. Glass, 1976, p. 4)
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Preface

Cescribing what mixed-effects metaregression models are, as well as the
implications of the empirical work conducted for this dissertation, are not easy tasks, as |
needed seven chapters to address those issues. A previous step, however, is to define
what a dissertation is, and that did not prove to be simpler to me. After working on this
project for several years, | cannot summarize such a long process in a short sentence.
Therefore, | will detail several considerations hased on my own experience along this
section, with the aim to provide a general picture of how this dissertation was planned

and carried out.

A first possibility is to conceive this dissertation as the product of several decisions.
The first important decision that | made concerning this project was to become a bachelor
student in Psychology in 2003, One of the first courses that | took was Methodology for
Psychological Research, in which Dr. Juan José Lépez Garcia provided a first approximation
to the systematic measurement and analysis of the human behavior. In the second
semester, along the subject Data Anafysis in Psychofogy, Dr. Fulgencio Marin Martinez

presented many statistical tools for the descriptive analysis of data from a sample of



subjects. By then, | was already interested in this guantitative approach to the

psychological field, guided by objective measurement and replicability.

In the second year, one of the most interesting courses for me was Statistical
Models in Psychology, along which Dr. Julio Sanchez Meca showed how sample
information can he generalized to hroader groups of subjects through statistical inference
technigques. One year later, | took the courses of Psychometrics, where Dr. Maria Dolores
Hidalgo Montesinos and Dr. losé Antonio Lopez Fina introduced us to tests and their
properties and underlying models, and Research Designs in Psychology, along which Dr.
Manuel Ato Garcia provided us with a wider perspective of how psychological
experiments can be conducted. After my first three years, | had already decided to geta
FhD in the knowledge area of Methodology of the Behavioral Sciences, and | have kept in

the pursuit of that goal until these days.

This dissertation can also he regarded as the product of the effort done not only by
the author, but also by several scholars who collaborated with me along the process. |
started to get familiar with meta-analysis, the main topic of my dissertation, when |
became an internal student with Or. Fulgencio Marin Martinez in 2004. Along the next
three years, we read and discussed several papers and books on meta-analysis, and | was
gradually involved in a meta-analytic review about the efficacy of psychological
treatments for patients with obsessive-compulsive disorder, headed by Dr. Julio Sanchez
Meca, and published afterwards in a prestigious scientific journal such as Clinical
Fsychology Review ([Rosa-Alcazar, Sanchez-Meca, Gomez-Conesa, & Marin-Martinez,
2008). My collaboration with hoth of them increased in the last year of my degree, with
several meetings every week, and one of the first consequences of this joint effort was my

Cegree Thesis (Lopez-Lopez, 2008).

Apart from the co-promotors of this dissertation, with whom | have always keptin
touch along these years, | also had the chance to go abroad several times and to work

under the supervision of different experts on meta-analysis. In 2010, | did my first



internship at the Maastricht University (The MNetherlands) to work with Dr. Wolfgang
Viechthauer, and this collaboration helped me to improve my technical skills regarding
software for simulation studies and was very important to develop one of the empirical
studies of this dissertation, presented in Chapter 5. My second internship took place in
2011 at the Peabody Research Institute in Nashville, Tennessee {United States of America)
under the supervision of Dr. Mark W. Lipsey and some members of his team such as Dr.
Sandra Jo Wilson and Dr. Emily Tanner-Smith. The fact that this research group is more
focused on applied than methodological work helped me to adapt my simulated scenarios
to more realistic conditions, and to be more aware of which methodological advances are
currently needed in Psychology. Finally, in 2012 | went to the Catholic University of Leuven
{Belgium] to work under the supervision of Dr. Eva Ceulemans, and this experience
allowed me to improve my technical skills regarding presentation of results and to get

familiar with multilevel models, which are becoming very important in my research field.

Last, but not least, this dissertation can he regarded as the product of a specific
context. Two elements can be remarked due to the crucial influence that they exerted on
the topic and on the feasibility of the projectitself. The first of them is The Meta-analysis
Unit, headed by Dr. Julio Sanchez Meca, who has been doing research on meta-analysis
since the early 80s, and whose expertise and orientation helped me to find a relevant and
useful topic for current science. The second one is the Fundacion Séneca, Agencia de
Ciencia y Tecnologia de la Region de Murcia, which sponsored this project and allovwed me
to work full time on the development of this dissertation since 2009, They also sponsored
all of my internships (eleven months in total), giving me the chance to collahorate with

other research groups and to enrich my education and the guality of my research.

| think that a dissertation is a research project that can he conducted in many
different ways. | hope that the previous paragraphs can illustrate how this dissertation
was carried out, and | hope that they can reflect how fascinating this process was to me,

and how grateful | am to everyone that made it possible.



The first chapter of this dissertation is an introduction, which is not intended to bhe
exhaustive. The reader interested can easily find a vast amount of hooks and papers
focusing on the conceptual and technical issues of meta-analysis, many of them cited
along Section 1.1. Therefore, the purpose of this first chapter is to present the main ideas
concerning this methodology, with special attention given to the topics that are direct and
indirectly addressed in the empirical part of the dissertation. In Chapter 2, several
outcome variables in meta-analysis will he described, focusing on the ones that were
employed in the empirical part of this dissertation. In Chapter 2, mixed-effects meta-
regression models are detailed, along with some alternative methods available for
estimating and testing the most relevant parameters. The fact that different methods are
available when fitting such models poses a problem to the meta-analyst, since the method

choice might have an influence on the results.

The empirical part of this dissertation includes three simulation studies comparing
different methodological alternatives when fitting mixed-effects meta-regression models,
and spans Chapters 4 to 7. In Chapter 4, seven methods for the estimation of the
heterogeneity variances and the model predictive power are compared. In Chapter 5, the
influence of seven heterogeneity variance estimators and six methods to test the model
coefficients is assessed. Chapter & constitutes an application of some of the methods
compared bhefore to the reliability generalization approach, which entails working with
reliahility coefficients as outcome variables. Finally, some general conclusions, limitations
of the studies here presented, and implications for future research are provided in

Chapter 7.



Resumen

La produccién cientifica ha crecido exponencialmente en las ultimas décadas en
practicamente todos los campos y disciplinas. Esta situacion ha hecho necesario gque los
investigadores disefien métodos para la sintesis eficiente del conocimiento. De entre ellos
destaca el meta-analisis, gque surge en el amhito de la Fsicologia (Glass, 1976). El meta-
analisis es una metodologia de revision sistematica de la investigacion basada en criterios

ohjetivos y caracterizada por la aplicacion de métodos cuantitativos.

El meta-analisis constituye un gran avance respecto a las revisiones narrativas
tradicionales en términos de precision, fiabilidad y validez {Cooper v Hedges, 2009h).
Cesde gque fue inicialmente propuesto por Gene V. Glass (1976), esta metodologia hasido
desarrollada v ampliamente aplicada en multitud de disciplinas como las Ciencias del
Comportamiento, Biologicas v de la Salud {e.g., Cooper, Hedges y Valentine, 2009; Marin-
Martinez, Sanchez-Meca y Lopez-Lopez, 2009). En un meta-analisis, el primer reto en los
analisis estadisticos suele consistir en escoger v calcular un indice del tamario del efecto
fue permita presentar los resultados de los estudios individuales en una métrica comiin.
Fosteriormente, lo hahitual es gque cada tamafio del efecto se pondere por una funcion de

su precision {e.g., Figott, 2001), de manera que los valores mas precisos tengan una mayor
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influencia en los resultados globales. El Capitulo 2 de esta Tesis Doctoral esta dedicado a
los diferentes indices del tamafio del efecto, con especial atencidon a los que se emplearon

en los capitulos empiricos posteriores.

Una vez gue los resultados individuales son directamente comparables, el meta-
analista puede calcular un promedio de los efectos, que suele complementarse con una
evaluacion de la heterogeneidad entre los resultados integrados. En caso de que
aparezcan discrepancias entre los resultados de los estudios individuales, el meta-analisis
permite al investigador efectuar una busqueda de variables moderadoras gque puedan
explicar al menos parte de esta variahbilidad. Los analisis de moderadores han cobradouna
gran importancia a lo largo de las dltimas décadas, va que en la practica es muy habitual
encontrar inconsistencias entre los efectos estimados en los diferentes estudios. Una de
las alternativas mas empleadas en la actualidad para llevar a cabo estos analisis de

moderadores son los llamados modelos de meta-regresion de efectos mixtos.

En la actualidad, existen diferentes métodos para la estimacion y el contraste de la
sighificacion de los parametros de un modelo de meta-regresidn de efectos mixtos. Esta
situacion puede resultar problematica, ya que la eleccién del método estadistico podria
afectar a los resultados y conclusiones de un meta-analisis. La presente Tesis Doctoral
incluye un total de tres estudios de simulacion Monte Carlo donde se compararon
diferentes metod os para el ajuste de model os de meta-regresion de efectos mixtos con un
moderador, con la finalidad de guiar las decisiones de los investigadores en funcion de las
condiciones concretas de aplicacion (nimero de estudios del meta-analisis, tamafio
muestral medio de los estudios vy caracteristicas de la distribucion de los efectos

paramétricos y de los tamafios muestrales).

En el tercer capitulo de esta Tesis Doctoral se presentaran los métodos
comparados a lo largo de los estudios empiricos para la estimacidon y contraste de la
significacion de los parametros mas relevantes en los modelos de meta-regresiéon de

efectos mixtos. Uno de estos parametros es la varianza inter-estudios residual, que

i



representa la cantidad de heterogeneidad entre los resultados individuales (distinta del
error de muestrec aleatorio) no explicada tras incorporar uno o mas moderadores al
modelo (Viechthauer, 2008). En la Seccion 2.2 de este trabajo se describiran siete
estimadores de este parametro. Dado gque la varianza inter-estudios residual esuno de los
elementos del factor de ponderacién (de los tamafios del efecto) en un modelo de efectos
mixtos, obtener estimaciones precisas de este parametro supone un aspecto importante.
Otro analisis es el contraste de la significacion de los moderadores incluidos en el modelo,
para el cual se presentaran seis alternativas metodolégicas en la Seccidn 2.2 de la
presente Tesis Doctoral. For tiltimo, en cuanto a la estimacion de la potencia predictiva
del modelo, la Seccidon 2.4 se centrara en la propuesta de Raudenbush {1994} para
modelos meta-analiticos, basada en la re-estimacion de la varianza inter-estudios tras la
inclusion de uno o mas predictores en el modelo. La existencia de hasta siete estimadores
de la varianza inter-estudios supone gue existen (al menos) siete métodos alternativos

para calcular la potencia predictiva en los modelos gue se estudian en este trabajo.

Cado el gran nimero de alternativas disponibles para el ajuste de modelos de
meta-regresion de efectos mixtos, un primer ohjetivo general de esta Tesis Doctoral fue el
de analizar hasta qué punto difieren los resultados en funcién del método empleado, con
el fin de determinar gué alternativas son preferibles dadas unas condiciones
determinadas. Fara ello, se llevaron a cabo tres estudios de simulacion Monte Carlo, ¥
cada uno de ellos incorpord un amplio espectro de condiciones realistas en Psicologia v
otros ambitos relacionados. Un segundo ohjetivo general de este trabajo consistia en
comprobar si existen condiciones bajo las cuales el método estadistico seleccionado no
afecta a los resultados. For una parte, se esperaha gue ninguno de los métodos
comparados mostrase un funcionamiento apropiado bajo las condiciones mas adversas.
For otra parte, se esperaba que todos los métodos tenderian a ofrecer resultados
convergentes (v precisos) cuando las condiciones de aplicacion fuesen optimas o con un

numero sufidente de estudios v de unidades por estudio en el meta-analisis.
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En el primer estudio de simulacion, presentado en el Capitulo 4, se encontraron
algunas diferencias en el funcionamiento de los diferentes estimadores de la varianza
inter-estudios, con tendencias similares para los diferentes métodos tanto en la
estimacion de la varianza inter-estudios total como en la residual {es decir, tras la adicion
de uno o mas moderadores al modelo). En un extremo, los métod os de Hunter y Schmidt
{H%), maxima verosimilitud (ML) v de Sidik y Jonkman (%)) proporcionaron estimaciones
negativamente sesgadas para la varianza inter-estudios (total v residual), mientras que el
método de Hedges (HE} se mostrd insesgado aungue con una baja eficiencia relativa en
comparacion con los demas estimadores. En el otro extremo, los estimadores de
CerSimonian y Laird {DL), maxima verosimilitud restringida {REML]) v el estimador empirico
de Bayes (EB) mostraron mejores resultados, aungue se ohservd un sesgo negativo en el
primero de ellos para los valores mas altos del parametro. Estos resultad os sugieren gue
los meétodos REML v EB constituyen opciones adecuadas para la estimacion de la varianza
inter-estudios (total y residual) en modelos meta-analiticos. El numero de estudios ejercid
una clara influencia en los resultados, ¥ ningin método alcanzé estimaciones precisas con
menos de 20 estudios. En contraste con lo anterior, se obtuvieron estimaciones precisas

con 20 estudios para todos los métodos vy sin importar los restantes factores manipulad os.

Un obhjetivo adicional en el estudio presentado en el Capitulo 4 era el de analizar el
rendimiento de los diferentes métodos para la estimacion de la potencia predictiva en
modelos de meta-regresion de efectos mixtos, siguiendo la propuesta de Raudenhbush
{1994). De nuevo, los métodos H5 ML =) v HE proporcionaron los resultados menos
precisos, mientras que los estimadores DL, REML v EB se mostraron como los mas
apropiados. Dentro de este grupo, el estimador EBE alcanzd los mejores resultados al
comhbinar los criterios de sesgo, tasa de truncamientos a 0 v 1 y eficiencia. El nimero de
estudios emergid de nuevo como el factor mas influyente para todos los métodos, y al
menos 40 estudios fueron necesarios para gue las estimaciones obtenidas con los

diferentes métodos fuesen precisas.
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El segundo estudio de simulacion, descrito en el Capitulo 5 comparé el
funcionamiento de diferentes métodos para el contraste de moderadores en modelos de
meta-regresion de efectos mixtos. La eleccion del estimador de la varianza inter-estudios
residual apenas alterd los resultados, pero si gue se encontraron discrepancias
importantes en funcién del método aplicado para el contraste de la significacién
estadistica de los coeficientes de regresién. En algunos trabajos anteriores se argumenté
fque el método tradicional para el contraste de los coeficientes de estos modelos, gque
asume una distribucién normal para los coeficientes paramétricos, no incorpora la
incertidumhre derivada del proceso de estimacion de las varianzas muestrales, lo cual
podria dar lugar a la obtencion de resultados erréneos (e.g., Hardy ¥y Thompson, 1996;
Henmi y Copas, 2010). Cuando se examind su rendimiento en este estudio, el método
tradicional mostré un inadecuado control de la tasa de error Tipo |, dando lugar a

rechazos incorrectos de la hipdtesis nula.

Ce entre las distintas alternativas al método tradicional examinadas en el Capitulo
5, el procedimiento propuesto por Knapp v Hartung {20032} se mostrd como una opcion
idénea, debido a su simplicidad de caleulo vy a las adecuadas tasas empiricas de error Tipo |
encontradas al aplicarlo. Hay que destacar, no obhstante, gque este método mostrd un
mejor rendimiento sin el truncamiento propuesto por los autores, el cual condujo a una
perdida de potencia estadistica. El meétodo de Huber-White y el test de razon de
verosimilitudes, gque tambien fueron incluidos en esta comparacion, no mostraron un
control apropiado de la tasa de error Tipo I. Finalmente, el test de permutaciones
funciond de manera similar al método de Knapp v Hartung no truncado. Aungque este
ultimo seria preferible en la mayoria de situaciones, el test de permutaciones representa
una alternativa apropiada cuando no sea posible asumir gue los estudios del meta-analisis
han sido seleccionados mediante un proceso de muestreo aleatorio (Manly, 1997). Por
otra parte, fueron necesarios en torno a 40 estudios para gue los diferentes métodos

alcanzasen tasas de potencia cercanas a 0.80, tal y como recomendé Jacob Cohen (1988).



Los estudios presentados en los Capitulos 4 ¥ 5 se centraron en una variable
dependiente normalmente distribuida, la diferencia entre medias estandarizada. For el
contrario, el dltimo estudio de simulacién de esta Tesis Doctoral, presentado en el
Capitulo 6, exploré algunas variables dependientes en meta-analisis dentro del enfoque
de generalizacion de la fiabilidad. En este estudio, se llevd a cabo una comparacién de
métodos para la estimacion de los coeficientes del modelo de meta-regresién y el
contraste de la significacion de moderadores. En cuanto a las variables dependientes, el
coeficiente alfa, que tiene una distribucién muestral asimétrica, fue comparado con tres
transformaciones normalizadoras. Los resultados solo mostraron ligeras discrepancias
para las diferentes variables dependientes. For lo que respecta a los metodos estadisticos
para el contraste de moderadores, las tendencias fueron similares a las descritas en el
Capitulo 5: los resultados fueron casi idénticos con los diferentes estimadores de la
varianza inter-estudios residual, mientras gue el método de Knapp ¥ Hartung no truncado
mejord el rendimiento del método tradicional en términos de tasa empirica de error Tipo |
v tasa de potencia estadistica. De nuevo, mas de 20 estudios fueron necesarios para gque

los métodos alcanzasen tasas de potencia estadistica satisfactorias.

La interpretacién conjunta de los hallazgos de los tres estudios de simulacién
permite desgranar varias conclusiones concernientes a los modelos de meta-regresion de
efectos mixtos. En primer lugar, el método escogido para la estimacion de la varianza
inter-estudios residual no mostré un influjo en los resultados del contraste de la
sighificacion estadistica de los coeficientes de regresion (tampoco para wvariables
dependientes con distribucion muestral asimétrica), pero s en la estimacion de la
potencia predictiva de estos modelos utilizando la propuesta de Raudenbush (1994); en
este apartado, los estimadores DL, REML y (especialmente] EE proporcionaron los

resultados mas precisos.

Otra de las conclusiones alcanzadas a la luz de los resultados de las simulaciones

de este trabajo esta relacionada con el método para el contraste de los coeficientes en un



modelo de meta-regresion de efectos mixtos. La prueba z tradicionalmente empleada
para el contraste de la significacion estadistica de moderadores en estos modelos mostrd
resultados poco precisos, mientras gque la aplicacion del método de Knapp vy Hartung
{2002) no truncado mejord los resultados de manera consistente. Estas tendencias se
mantuvieron cuando la variable dependiente empleada en los analisis tenia una
distribucién muestral asimétrica. Seglin estos resultados, el uso del método de Knapp vy
Hartung no truncado deberia generalizarse cuando se contraste estadisticamente la
asociacion de un moderador con los tamafios del efecto mediante modelos de meta-

regresion de efectos mixtos.

For dltimo, en cada una de las simulaciones se manipularon varios factores. De
ellos, el nimero de estudios se mostrd invariablemente como un factor crucial para
ohtener resultados precisos en modelos de meta-regresion de efectos mixtos; en
concreto, los resultados de los estudios de esta Tesis Doctoral sugieren gue se reguieren
alrededor de 40 estudios para poder llevar a cabo estos analisis con ciertas garantias,
mientras que la interpretacion de los resultados deberia ser muy prudente en las
situaciones donde el niimero de estudios incluidos en el meta-analisis esté por debajo de
esta cifra. En cuanto a los demas factores, un mayor numero de participantes por estudio
en promedio conllevd la obtencidn de resultad os mas precisos, mientras que el grado de
heterogeneidad entre los efectos parameétricos de cada meta-analisis mostré una
influencia desigual en funcion del objetivo concreto: una mayor heterogeneidad entre
efectos parameétricos afectd negativamente a la precision de los contrastes de la
sighificacion de moderadores, al iempo que mejord los resultados en la estimacion de la

potencia predictiva de los modelos ohjeto de estudio en esta Tesis Doctoral.

i
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Chapter 1

Introduction

1.1 Meta-analysis

Research production has exponentially grown along the last decades. Nowadays, it
is common to find a great amount of studies analyzing the same phenomena in most
scientific fields {e.g., Hedges, 2007). The reasons for this fact are diverse. As Cooper and
Hedges (2009a) stated, “multiple studies on the same problem or hypothesis arise
bhecause investigators are unaware of what others are doing, because they are skeptical
about the results of past investigations, or because they wish to extend (that is, generalize
or search for influences on} previous findings. Experience has shown that even when
considerable effort is made to achieve strict replication, results across studies are rarely
identical at any high level of precision” {p. 4). The vast amount of scientific work published
poses a problem of how to organize and summoarize findings from different studies on the
same topic. Given the need for accumulating scientific evidence, research syntheses have
hecome an essential tool for researchers and practitioners interested on the most recent

developments in their fields.



A research synthesis is carried out with the aim to clarify the state of the artin a
given topic, by integrating information from multiple studies conducted to date {Marin-
Martinez, 1996). The synthesist will have to face different challenges along the reviewing
process. Although the studies analyzed the same research guestion, the methodological
focus, measurement instruments, context, and sample characteristics will typically
fluctuate from one to another. Also, contradictory results are likely to be found among
studies, due to sampling error, study characteristics, or both {Hedges & Olkin, 1985). A
research synthesis is, in sum, a complex process which requires systematization at each of

its stages.

Research syntheses firstly appeared in Psychology and Education, but they have
spread through many other disciplines, especially Medical Sciences and Social Folicy
Analysis. When a research synthesis is conducted, condusions are addressed not only to
scholars, but also to practitioners, policy makers, and the general public {Cooper &
Hedges, 2009a). Meta-analysis is a methodology for research synthesis whose

characteristics will be detailed along the next sections.

1.1.1 Meta-analysis and other forms of research

A way to delimit the aim and implications of meta-analysis is by comparing this
methodology with some other forms of research. In this section, meta-analysis is firstly
compared with primary and secondary researches, which also make use of gquantitative
methods. Later, differences bhetween meta-analysis and other forms of research synthesis

are detailed.



1.1.1.1 Primary research, secondary research, and meta-analysis

Cata analysis can be conducted with different research goals (Glass, 1976). The
most conventional one is accounted for by primary analysis, which refers to the original
analysis of data previously collected for an individual study. Another possibility is to carry
out a secondary anafysis, that is, to re-analyze data to answer different research
fuestions, or to address the original question employing different statistical technigues.
Both primary and secondary analyses are considered as empirical studies {American

Psychological Association, 2010].

The concept meta-analysis, or “analysis of analyses”, was coined by Gene V. Glass
{1976). Glass proposed this term to label “the statistical analysis of a large collection of
analysis results from individual studies for the purpose of integrating the findings” (Glass,
1976, p. 3). This methodology can be applied to many different disciplines in a very wide
range of situations {e.g., Cooper et al., 2009). It is sensible to carry out a meta-analysis
when enough studies are available on the same research guestion. In that case, a meta-
analysis allows to integrate results from the individual studies, as well as to explain
possible inconsistencies hetween findings from different studies (Borenstein, Hedges,
Higgins, & Rothstein, 2009; Botella & Gambara, 2002; Cooper et al, 2009; lipsey &
Wil son, 2001).

Two main differences hetween the analyses conducted in individual studies and in
meta-analysis can be outlined. Firstly, the analysis unit in an individual study is {usually)
the suhject, while in @ meta-analysis the unit of analysis is {usually) the study. Secondly,
while analyses in the individual studies are {usually) conducted by applying ordinary least
siquares [(OLS) technigques, these procedures are inappropriate in a meta-analysis. The
reason is that the variance of each unit of analysis in a meta-analysis (e.g., the study) is
inversely proportional to the sample size and, since sample sizes widely vary along the set
of studies of most meta-analyses, the assumption of homoscedasticity required for OLS

analysis does not hold {Aloe, Becker, & Figott, 2011; Raudenhbush, 1994; Sanchez-Meca &
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Marin-Martinez, 2008). Thus, instead of OLS procedures, weighted least squares (WLS)

technigues are typically employed in meta-analysis.

The estimates obtained in a meta-analysis will have smaller standard errors and
narrower confidence intervals than those obtained in the individual studies, leading to a
gain of statistical power { Bonett, 2009; Cohn & Becker, 2002; Normand, 1999). Apart from
this, an individual study using a very large sample of subjects will yield an accurate,
powerful estimate of the effect in that study (Borenstein, Hedges, Higgins, & Rothstein,
2010]), but this does not allow for generalizations to other scenarios different to that
considered in the study (Raudenbush, 2009}, Therefore, the main advantage of a meta-
analysis is that conclusions using this methodology can be more broadly generalized than
those achieved from primary or secondary analyses (Lau, loannidis, & Schmid, 1998; Matt

& Cook, 2009].

1.1.1.2 Narrative reviews, systematic reviews, and meta-analysis

Although a few combinations of guantitative results can be found in the first
decades of the twentieth century (e.g., Pearson, 1904} and even hefore (see Stigler, 1986),
research syntheses until the 19705 were mostly qualitative and narrative (Glass, McGaw,
& Smith, 1981; Sanchez-Meca & Ato-Garcdia, 1929). In a narrative review, an expert on the
field reads and interprets the individual reports hefore elaborating conclusions that intend
to summarize the state of the art The main characteristic in such narrative research
syntheses is the lack of a systematic schedule to make decisions, as well as the absence of

any guantitative indicators [ Marin-Martinez, 1996).

Cue to this lack of systematization, several limitations of narrative reviews can he
enumerated (Botella & Gambara, 2002; Marin-Martinez, 1996; Rosenthal & DiMatteo,

2001; Sanchez-Meca, 1986). The main problem in these reviews is that some crucial steps

il



such as inclusion and weighting of the studies can he affected by the expert’'s opinion and
expectations, posing problems of subjectivity. Also, since most decisions made along the
reviewing process are typically not specified in the report, another problem is the lack of
replicability. Moreover, results from the individual studies are not gquantified, so that it is
not possible to assess their magnitude and variability. Furthermore, when narrative
reviews guantify the results from a set of empirical studies, they usually count the number
of statistically and nonstatistically significant results, a strategy that can lead to mideading

results (e.g., Hedges & Olkin, 1985).

As an alternative, systematic reviews allow researchers to conduct research
syntheses guided by objectivity, systematization, and replicahility. The use of quantitative
integration methods in a systematic review is known as meta-analysis, which was
conceived to overcome the aforementioned limitations affecting narrative reviews (Glass,
1976; Rosenthal & DiMatteo, 2001; Sanchez-Meca, 1986). For this reason, metg-angfysis
can also he referred to as quantitative review (American Psychological Association, 2010).
The methods employed for the integration of a set of studies have undergone enormous
change, and quantitative and objective methods have bhecome more and more
implemented to the detriment of gqualitative and subjective ones {Chalmers, Hedges, &
Cooper, 2002; Shadish, Chacén-Moscoso, & Sanchez-Meca, 2005; Valentine, Cooper,
Fatall, Tyson, & Rohinson, 2010).

In sum, meta-analysis allows researchers to gquantitatively integrate the numeric
results from a set of studies on the same topic, by applying the same rules and scientific
rigor demanded for empirical studies {Botella & Gambara, 2002; Cooper, 1998; Hedges &
Olkin, 1985; Hunter & Schmidt, 2004; Sanchez-Meca & Ato, 1989; Schulze, 2004), This
scientific rigor leads to more valid conclusions than those achieved through narrative

reviews.

As Rosenthal and DiMatteo {2001) stated, “meta-analysis allows researchers to

arrive at conclusions that are more accurate and more credible than can he presented in
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any one primary study or in a nongquantitative, narrative synthesis” (p. 61). Meta-analysis

has, however, some limitations as well, as it will he detailed along this chapter.

1.1.2 Phases of o meta-analysis

A meta-analysis entails several phases (e.g., Botella & Gambara, 2006; Cooper et
al., 2009; Llipsey & Wilson, 2001): (1) defining the research guestion, (2] literature search,
{2} coding of studies, {4) statistical analyses and interpretation, and {5) publication. In this

section, each of them will be briefly described.

1.1.2.1 Defining the research question

First of all, the constructs whose relationships are intended to be studied in the
meta-analytic review must be specified. As pointed out by Cooper (2007), at this stage the
meta-analyst must specify the research evidence relevant to those relationships. To reach
this goal, all variables implied in the relationships of interest must he identified and
described, induding not only dependent and independent variables, but also some
potential moderator variables. Before all of that can be stated, some previous planning
about the synthesis process and further findings may he needed {Valentine, Pigott, &

Rothstein, 2010).

Although this is a conceptual phase which does not entail many tasks, it will have a
great influence on the remaining stages of the meta-analysis. A cear and precise
definition of the research question is crucial before searching for the individual studies
{Reed & Baxter, 2009], which constitutes the next phase. Also, the nature of the
relationships of interest will affect the computation of effect sizes {Lipsey, 2009], which

constitute the main outcome variable in a meta-analysis.
o



1.1.2.2 Literature search

Once the research question has been established, the next goal consists of locating
and retrieving the individual studies that analyzed that guestion. A set of inclusion and
exclusion criteria for the studies must be defined. Typically, the meta-analyst is interested
in primary studies, that is, studies that recruited a sample of subjects, employed
measurement instruments, and reported quantitative results. Also, the search must bhe
restricted to a range of years. A common practice is to delimit the search from the year
when the research gquestion was firstly proposed in the literature to the present. Another
issue is the specification of the languages that the research team can read. Moreover, the
studies can be reguired to fulfill some other criteria in order to restrict the search process
to studies with a specific design type, a minimum sample size and/or a minimum
methodological guality. Depending on the gquestion addressed in the meta-analysis, some
selection criteria of the studies will be referred to the population to which the participants
in the samples pertain, the kind of experimental manipulations (e.g., types of treatment,

interventions, or programs), and the type of outcomes measured in the participants.

Regarding search procedures, a combination of several strategies should he the
hest option (Reed & Baxter, 2009). Nowadays, electronic sources constitute an
indispensable tool (White, 2009}, including general databases such as the ‘Webh of
Knowledge or ProQuest, specific ones like PsycINFO and MEDLIME, or search engines like
Scholar Google. Choosing the right terms, or key-words, is a crucial issue if the researcher
aims to find the relevant pieces of empirical evidence on the topic (Cooper, 2007). Since
the goal of the literature search is completeness, the search terms should indude all
relevant words to the topic of interest, including synonyms and related terms (Reed &

Baxter, 2009].

Other strategies for the retrieval of the individual studies of interest are backward
and forward searches. Backward search refers to the identification of publications by

checking the citations included in the already retrieved documents. On the other hand, a
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forward search involves identifying all items that cited a retrieved publication {Normand,
1929]. Informal sources (e.g., conference contributions, master and doctoral theses) and
experts’ consultation constitute very valuable complements in the search process,
especially for the retrieval of fugitive or grey literature (Sutton, 2009), that is, unpublished
documents or manuscripts published in journals or hooks that cannot be found through

formal sources {Sanchez-Meca & Marin-Martinez, 2010).

The main threat at this point is publication higs, which occurs when, in a given
research field, studies providing statistically significant results are more likely to reach
publication than the ones with nonsignificant results (Hedges, 1992; Sutton, 2009). Efforts
to locate and to retrieve unpublished studies constitute a very important issue in a meta-
analysis, as well as to check whether publication hias can produce a hias in the meta-
analysis results (Begeg & Mazumdar, 1994; Hedeges & Vewea, 1996; Rothstein, Sutton, &
Borenstein, 2005; Sanchez-Meca & Marin-Martinez, 2010).

1.1.2.3 Coding of studies

At this step, information from the variables considered as potential moderators
must be gathered. Moderators refer to those variables that might affect the magnitude of
the relationship under study. Although that list of potential moderators will vary from one
meta-analytic review to another, three broad categories of moderator variables can be

distinguished: methodological, substantive, and extrinsic variables.

Substantive variables are those specific to the phenomenon under study. They are
strongly dependent on the research topic and constitute the group of variables that, on a
theoretical basis, are expected to be related to the study outcomes. In psychological

research, this category includes characteristics of the sample subjects (e.g., age, gender,



ethnicity, severity of the disorder], of the treatment {e.g., duration, theoretical approach,

therapists’ experience], and of the contextie.g., geographical and cultural environment].

Methodological variables refer to characteristics of the designs and methods of the
studies, whose influence should be discarded before interpreting any substantive
relationship (Lipsey, 2009). Within the psychological field, they can incude aspects such as
the design type (e.g., experimental vs. gquasi-experimental), the type of control group {e.g.,
active ws. inactive, psychological vs. pharmacological placebo], attrition, use or not of
blinded assessors, or use of intention-to-treat vs. completers analyses. Some of them are
of interest irrespective of the field where the meta-analysis is carried out. Studies
methodologically flawed can offer hiased estimates of the effects. In order to assess the
potential risk of hias in the effect estimates from the studies, the meta-analyst must

include some guality checklist or scale proposed in the literature,

Lastly, extrinsic variables are those characteristics that have nothing to do with the
research enterprise so that, in principle, they should not be related at all with the study
results (lipsey, 2009; Sanchez-Meca & Marin-Martinez, 2010). As methodological
moderators, extrinsic variables may appear as confounding variables in a meta-analysis,
and ignoring them might lead to a wrong interpretation of the results. This category
includes features like the publication year, publication source {published vs. unpuhlished]),
the main author's affiliation and sex or the existence of a potential conflict of interests

with regards to the funding source of the study.

In practice, the coding of studies is a complex process that usually entails many
decisions to he made by the meta-analytic team, hecause the information about the
variahles of interest is not always clearly reported in the individual studies. A coding
protocol with a list of items must be developed, in order to guarantee the transparency
and replicahility of the coding process (Wilson, 2009). In such protocols, the important
information from each unit of analysis (e.g., study) is gathered and, in some cases, readily

computerized for further analytic purposes. Another useful tool for the meta-analytic
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team is a coding manual where all decisions and inferences to he made from the

incompletely reported information in the individual studies are specified.

The main threat at this stage is the lack of reliability in the coding process (Crwin &
Vevea, 2009). Both intrarater and interrater reliahilities should bhe evaluated [(Wilson,
2009]. Intrarater reliability refers to the consistency of a single coder when applying the
coding protocol to the same studies in different occasions. Although some discrepancies
might arise hetween the coding decisions of a single person, interrater reliability is usually
the main concern for the meta-analyst at this stage. Interrater reliahility is the degree of
agreement between coders. For its evaluation, at least a random sample of the meta-
analytic units {e.g., studies) should be independently coded by two or more membhers of
the research team. Interrater reliability can he assessed using indices such as intraclass
correlation and Cohen’s kappa for continuous and categorical moderators, respectively.
When discrepancies are found between different coders, the final decision should he

made based on coder consensus (Orwin & Vevea, 2009).

1.1.2.4 Statistical analyses and interpretation

At this stage, the meta-analyst must select and apply the most suitable procedures
to combine the results across the individual studies and to analyze possible sources of the
variahility among the study results {Cooper, 2007). This phase entails several
computational stages, from the calculation of an effect size from each unit (e.g., study) to

the statistical integration of results.

The first goal for the meta-analyst at this stage consists of choosing a numeric
index to summarize the results from each unit of analysis. For the remainder of this
dissertation, studies will be assumed to be the unit of analysis, although some other

scenarios are feasible in meta-analytic applications (e.g., one study can provide multiple
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outcomes). This goal is achieved by computing an effect size index for each study. Effect
sizes constitute the main outcome variable in a meta-analysis {e.g., Hedges, 1992, 2007;
Hedges & CQlkin, 1985; Sanchez-Meca & Marin-Martinez, 2010). Cifferent indices can he
computed depending on the purpose of the meta-analysis and the metric of the variable/s

implied in the relationship of interest. This issue will he addressed in Chapter 2.

Once the information from the studies has been summarized, statistical analyses
can be conducted. The first step will be a descriptive analysis of the variables coded from
each study, which will take part in the inferential analyses to be conducted afterwaris.
Cescriptive analyses of all data collected so far can provide a picture of the “typical” study
{Llipsey, 2009]). That information is achieved by computing indexes such as the mean or
median, standard deviation or range, percentage, and some asymmetry index. Charts such
as stem-and-leaf displays and hox-and-whisker plots (Tukey, 1977) are also recommended

to illustrate the data distribution.

After descriptive analyses, the first inferential goal for the meta-analyst is the
calculation of an overall effect size estimate. When computing this average, effect sizes
are usually weighted by some function of their respective sample sizes, with greater
weights for the most accurate estimates, that is, for the estimates computed from the
largest samples {e.g., Shadish & Haddock, 2009). Choice of weights will require the
assumption of an underlying statistical model, typically a fixed-effect or a random-effects
model (this matter will be considered further in this chapter). The overall effect estimate
is usually complemented with a confidence interval, which allows the synthesist to test

the hypothesis that the overall effect is null.

The estimation of the mean effect allows the meta-analyst to answer gquestions
such as: does the intervention program work on average? What is the mean precision of
the instrument? Howewver, the overall effect size in a meta-analysis may not he wvery

informative in situations where several studies have conflicting results. In this case, a
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somewhat hetter alternative is to average a subset of studies providing similar statistical

conclusions (Normand, 1999).

In addition to the owverall effect estimate, it is also interesting to ewvaluate the
heterogeneity across the effect sizes of the meta-analytic data set. For this purpose, the
() statistic {Cochran, 1954; Hedges & Clkin, 1985) is often employed to test the null
hypothesis that variability among the effect sizes is only due to random sampling error.
MNonetheless, the power of the ¢ statistic is strongly dependent on the number of studies
{Aguinis, Gottfredson, & Wright, 2011; Baker, White, Cappelleri, Kluger, & Coleman, 2009;
Hardy & Thompson, 1998; Sagie & Koslowsky, 1993; Sanchez-Meca & Marin-Martinez,
1997; Schmidt, Oh, & Hayes, 2009; Viechthauer, 2007¢). For that reason, the 7° index
{Higgins & Thompson, 2002), which quantifies the percentage of heterogeneity among
effect sizes different to sampling error, has heen recommended as a complement to the

statistical conclusion of the ¢J statistic (Huedo-Medina, Sanchez-Meca, Marin-Martinez, &

Botella, 2006; Shadish & Haddock, 2009).

Finally, the influence of moderators on the wvariability of the effect sizes is
analyzed. A moderator variable is a categorical or continuous variahle that exerts an
influence on the direction and/or strength of the relationship of interest {Baron & Kenny,
1986). Since moderator analyses constitute the main focus for all of the empirical studies
developed along this dissertation, such analyses will be described with more detail later in

this dissertation.

Several computerized alternatives are available to the researcher when conducting
a meta-analysis, including specific software {e.g., Borenstein, Hedges, Higgins, &
Rothstein, 2005; Review Manager, 2011; Rosenberg, Adams, & Gurevitch, 1999} or macros
developed for their implementation in generic statistical packages (e.g., Harbord &
Higgins, 2008; Viechthauer, 2010). In addition to the statistical computation, these tools

also allows the researcher to elaborate some graphical displays specifically designed for
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meta-analysis, such as the funnel plot and the forest plot (Anzures-Cabrera & Higgins,

2010; Borman & Grigg, 2009].

1.1.2.5 Publication

Once the data analysis and result interpretation is finished, it is time to write the
meta-analytic report (Sanchez-Meca & Botella, 2010). Some guidelines have bheen
published to help meta-analysts to correctly report and write a meta-analysis, such as the
FRISMA statement (Preferred Reporting ftems for Systematic Reviews and Meta-Anafyses;
Moher, Lliberatti, Tetzlaff, Altman, and The PRISMA Group, 2009) and the AMSTAR

statement [Assessment of Multipte SysTemAtic Reviews; Shea et al., 2007).

The schedule in a meta-analytic report is similar to that of primary research
{American Psychological Association, 2010): introduction, method, results, and discussion.
The introduction must justify the need for carrying out the meta-analysis (Sanchez-Meca
& Marin-Martinez, 2010, providing some theoretical background that will allow readers
to understand the relevance of the findings reported in the meta-analysis. In the
introduction, the ohjectives of the meta-analysis must be made explicit. In the method
section, several steps already detailed along Section 1.1.2 of this dissertation must be
described: search for the studies, coding of the moderator variables, selection of the
effect size index, and statistical analyses. It is important to specify all statistical technigues
employed and decisions made along the meta-analytic review, in order to guarantee its

replicability.

The results section must include, as detailed before, both descriptive and
inferential analyses, providing the reader with an overview of the set of studies
integrated, as well as an average of the effect size estimates and further analyses to

explain at least part of the variahility among them. Including tables and charts in this
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section will be helpful to the reader (Botella & Gambara, 2006). In the discussion, the
implications of the results obtained must be presented, together with the limitations of
the meta-analysis. In a meta-analytic study, these limitations will often include aspects
such as language restrictions, failure to locate unpublished studies, or failure to retrieve
located studies (Clarke, 2009). The meta-analytic report should finish offering some

recommendations for future research in the field.

At the end of the report, when listing the references, the American Psychological
Association (2010) recommends to include and remark those from the individual studies
integrated in the meta-analysis, or to provide these references in an appendix if the
number of studies exceeds 50. Lastly, if space restrictions of the journal allow for that, itis
recommendable to incude an appendix with the whole database, where the main
variahles employed in the statistical analyses are gathered. This will allow any interested
researcher to try to replicate the results or even to conduct complementary analyses using

different statistical technigues.

1.1.3 Limitations of meta-analysis

Like in any primary research, multiple threats to the validity of a meta-analysis can
limit the scope and the generalizability of the results {Hedges, 1992; Lau et al., 1998;
Marin-Martinez, 1996; Matt & Cook, 2009; Rosenthal & DiMatteo, 2001). Some of these
limitations can also affect any other form of research, while some others are specifically

related to meta-analysis.

One limitation is related to pubfication higs, which was previously defined. It
constitutes a threat not only to the meta-analytic conclusions, bhut also to the statistical
techniques employed in a meta-analysis. Fublication hias will tend to induce a negative

correlation between effect size and sample size in a set of published studies. This is
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hecause studies with small sample sizes have to estimate a large effect size to reach a
statistically significant result and be published. Since the weighting factor in meta-analysis
is usually a function of sample size, this trend might produce hiased results (Begg &
Mazumdar, 1994; Henmi & Copas, 2010; Levine, Asada, & Carpenter, 2009; Slavin & Smith,
200).

Because studies with small sample sizes have a low statistical power (Matt & Cook,
2009} and therefore a low probability to find statistically significant results, they can he
specially affected by publication bias. For that reason, some authors have proposed
excluding underpowered studies in a meta-analysis as a way to solve the problem of
publication hias (Hedges & Figott, 2001; Kraemer, Gardner, Brooks, & Yesavage, 1998;
Muncer, Craigie, & Holmes, 2003). A different approach, which has heen recently
proposed to deal with this problem {Moreno et al,, 2012), is a modification of the weights

such that it minimizes the impact of small studies on the pooled results.

Several authors have made great efforts to help researchers to determine the
extent to which publication hias might affect the validity of their results and conclusions,
by means of different statistical methods and graphical displays (Duval & Tweedie, 2000a,
2000b; Howell & Shields, 2008; Light & Pillemer, 1984; Rothstein et al., 2005; Sutton,
Cuval, Tweedie, Abrams, & lones, 2000). Ferguson and Brannick (2012) examined a
sample of 91 recent meta-analyses from the psychological field, and found that 70% of
them made some effort to analyze publication bias. Finally, it should bhe pointed out that,
despite it constitutes one of the main concerns for a meta-analyst, publication hias is even
more problematic in non-guantitative syntheses, because methods for dealing with it are

very limited {Sutton, 2009).

Another issue is the influence of reporting and methodological quality of the
indivicduagl  studies on the meta-analysis results. Meta-analysis was conceived as a
methodology for the integration of information from several individual studies,

considering that results from each individual study will provide important data that should
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not he discarded (Glass, 1976). Howewver, fluctuations in the rigor with which the
individual studies are conducted and their results are reported may affect the results and
conclusions of the research synthesis (Valentine, 2009). Conseguently, meta-analysis has
heen criticized due to the inclusion of studies irrespective of their quality, and this
criticism has been labheled as “garbage in and garbage out” {Hunt, 1997}). Two main
approaches have heen implemented regarding quality (Lipsey & Wilson, 2001). One of
these approaches consists of including only studies that fulfill several quality criteria, while
the other implies incorporating guality to the analyses, either as a weighting factor (e.g.,
Rosenthal, 1995) or as part of moderator analyses, that is, treating quality as an empirical

issue (Valentine, 2009).

However, analyzing the guality of the individual studies and its influence on the
meta-analysis results is not a trivial issue. Rules for assessing gquality and determining its
relevance to the relationship of interest remain unclear at present (Lopez-Fina, Sanchez-
Meca, & MNORez-Mafez, 2011, July; Normand, 1999). As an attempt to circumvent this
prohlem, dozens of gquality scales have been developed, with their items reflecting guality
indicators that might have an influence on the results from each individual study. The aim
of such scales was to obtain a pooled value for the quality of an individual study. However,
the sum of items addressing different aspects related to the methodological guality did
not prove to he useful in meta-analysis up to date (Valentine, 2009]. Currently, itis more
accepted to assess the methodological quality of the studies by applying a list of individual
items, but without reporting a total score {Herbison, Hay-Smith, & Gillespie, 2006; Higgins
& Green, 2008; l0ni, Altman, & Egger, 2001; Llittell, Corcoran, & Fillai, 2008). In sum, there
is still much work to he done hefore reaching consensus about how to assess the guality
of the meta-analytic units and which procedure works best to minimize the effect of this

threat to the meta-analytic conclusions.

Another problem which is receiving more and more attention in meta-analysis is

the dependency among effect size estimates (Ahn, Myers, & lin, 2012; Glesser & Clkin,
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2009; Lipsey, 2009). Perhaps the most common type of dependency in meta-analysis
arises when multiple effect sizes are extracted from the same participant sample on
similar outcome constructs (e.g., effect sizes are clustered within studies). Another
situation where dependency can be found occurs when some research teams are
responsihle for multiple studies induded in the meta-analysis {e.g., studies are clustered
within research teams]. The most commonly used meta-analytic methods do not account

for such dependency structures when the meta-analytic data are clustered.

Although multivariate technigues can be employed for handling dependent effect
size estimates, such techniques require information about the covariance structure that is
rarely available or reported in the individual studies (Gleser & Clkin, 2009; Jackson, Riley,
& White, 2011). In order to satisfy the assumption of independent effect sizes, most meta-
analysts traditionally either selected one effect size per cluster for the analyses, or created
one effect size per cluster by averaging all effect sizes within that cluster {Hedges & Clkin,
1985; Marin-Martinez & Sanchez-Meca, 1999; Rosenthal & Rubin, 1988) or simply
choosing one of them hased on substantive reasons. Such strategies lead, in all cases, to a
loss of information [Becker, 2000]), and averaging several effect sizes within a study can
even provide misleading results if those effect sizes are negatively correlated, which can
only he checked in the unlikely event that the primary report includes all participants’
data. Moreover, some other meta-analytic studies analyzed the whole set of effect sizes
ignoring dependencies. Mevertheless, failure to recognize dependency and to use
appropriate analytic technigues to cope with it can lead to inaccurate estimates of effects
and their standard errors, the latter usually being too small {Hedges, 2009; Van den
MNoortgate, Lopez-Lopez, Marin-Martinez, & Sanchez-Meca, in press; Van Houwelingen,

Arends, & Stijnen, 2002).

Since none of the aforementioned strategies sounds completely satisfactory, it is
litle surprise that methodologists have hegun to propose new methods to deal with

dependent effect sizes that are feasible for most meta-analysts to use. Cne of these
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methods is based on robust variance estimation {Hedges, Tipton, & lohnson, 2010]. Also,
multilevel models, which account for variation at different levels {Gelman & Hill, 2007;
Goldstein, Browne, & Rasbash, 2002), have been proposed as an alternative to analyze
meta-analytic databases containing dependency structures (Beretvas & Pastor, 2003; Hox
& de Leeuw, 2002; Konstantopoulos, 2011; Stevens & Taylor, 2009; Van den Noortgate et

al., in press).

Critics of meta-analysis have raised some other limitations in the literature (e.g.,
Hunt, 1997). One of those is the overemphasis on the magin effects of each individual
study, to the detriment of other interesting findings {e.g., interactive within-study effects).
Another famous criticism to meta-analysis is the gpples gnd oranges argument, which
remarks on the fact that meta-analysis involves summarizing results from studies that
might widely vary in several aspects, such as the operationalization and measurement of
the variables of interest or their methodological framework. Besides the criticisms, meta-
analysis has consolidated as an indispensable methodology accepted by the scientific

community in all empirical sciences.

1.1.4 Meta-analysis and Fvidence-Based Practice

Cecisions affecting professional practice should he endorsed by the hest scientific
evidences available (e.g., Sanchez-Meca, Marin-Martinez, & Lopez-Lépez, 2011). This is
the main goal of the so-called Evidence-Based Practice approach, which recently emerged
with the aim to support practitioners and policy makers by providing them with the hest
empirical findings in their fields. When multiple studies are available on the same topic,

the hest evidence can be produced by a meta-analysisintegrating their results.

Frohahly, the first key date concerning the Evidence-Based Practice approach is the

establishment of the U.K. Cochrane Center in 1992, with the aim to “facilitate the creation
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of an international network to prepare and maintain systematic reviews of the effects of
interventions across the spectrum of health care practices” {Cooper & Hedges, 20093, p.
10). One year later, the Cochrane Collaboration was founded®, reaching in 2006 the
amount of 11,000 contributors, and heing considered for many people as the gold

standard for assessing treatment effectiveness in Medical Sciences at present.

The Cochrane Collaboration promotes high-guality systematic reviews by helping
meta-analysts in different ways (\White, 2009). One of these services is the specification of
criteria for including studies in a meta-analysis, as well as for reporting results. Also, the
Cochrane Library gathers several databases containing useful documents such as
systematic reviews already done or methodological improvements involving research

syntheses,

The Cochrane Collaboration is considered nowadays as a great support for
practitioners and policy makers in Medicine {Baker et al., 2009). This institution has

establish ed the following ranking for scientific evidences:
. Evidence obtained from a meta-analysis of randomized controlled experiments.
. Evidence obtained from (at least) a randomized controlled experiment.
.  Evidence obtained from (at least] a controlled study (not randomized).
V.  Evidence obhtained from (at least) a quasi-experimental study.
V. Evidence obtained from descriptive studies.

VI. Evidence obtained from an experts committee,

! www . cochrane. org
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In a similar vein, the Camphell Collahoration was established in 2000 with a
multidisciplinary focus. The goals of its founders are summarized in this definition”: “The
Campbhell Collaboration (C2) helps people make well-informed decisions by preparing,
maintaining and disseminating systematic reviews in education, crime and justice, and

social welfare.”

Similar to the Cochrane Collaboration, services from the Campbell Collaboration to
reviewers incude specialized databases containing useful information and the clear
establishment of the criteria for inclusion of studies in a meta-analysis, choice of the
search strategies, and so on. Moreover, the so-called coordinating groups supervise the

preparation of reviews in different fields (White, 2009).

The goals of the Campbell Collaboration include the avoidance of duplicities in
systematic reviews, the minimization of hiases in the results, and the constant updating
process by incorporating new scientific findings. The aim of this institution is to provide
support to professionals from Social, Educational, Criminological, and Behavioral Sciences
{e.s., Sanchez-Meca, Boruch, Petrosino, & Rosa-Alcazar, 2002; Sanchez-Meca & Botella,

2010).

One more institution that can be regarded as a product of the Evidence-Baser
Practice approach is the Joanna Briggs Institute, which was established in the Nursing field
in 1996. Visitors of the website of the Joanna Briggs Institute’ can find the following
definition: “the Institute is known for providing reliable evidence which health
professionals can use to inform their clinical decision making. The Institute develops
evidence in various formats for nursing, allied health and medical professionals as well as

support information for consumers”,

2 .
www camphbellcollaboration.org

? www joannabriges. edu.ay
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In short, several scientific networks have been established in the last years to
promote high-guality research syntheses in different fields. Their existence is very helpful
not only for practiioners and policy makers, but also for meta-analysts, especially at
stages such as the literature retrieval or the choice of methods for integrating results

(White, 2009},

1.2  Statistical models in meta-analysis

Nowadays, different statistical models are available when carrying out a meta-
analysis, and the model choice will have an influence not only on the statistical procedures
for integrating the information, but also on the generalizahility of the results (Hedges &
Vevea, 1998). Moreover, depending on some characteristics of the meta-analytic
database, some models might not be appropriate. In this section, the statistical models
that can be assumed when conducting a meta-analysis will be presented, together with a

summary of the main factors that should be considered for the model choice.

1.2.1 The fixed-effect model!

Some meta-analytic models can bhe classified as fixed-effect models. These models
assume that the parametric effect sizes are fixed but unknown constants to he estimated,
and they usually assume as well that parameters are homogeneous from one study to
another {Hedges & Vewea, 1998). In a fixed-effect model, also named common-effect
model (cf. Borenstein et al., 2010], the variahility hetween estimates is assumed to he
wholly due to random sampling of participants for the individual studies (e.g., Schulze,

2004]. Since the effect parameters from the studies included in the meta-analysis are the
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only ones intended to estimate, results assuming a fixed-effect model can only he

extend ed to studies identical to those included in the meta-analysis (Normand, 1999),

Let £ denote the number of studies included in a meta-analysis and é.— the effect

size estimate for the ith study. In a fixed-effect model, LE{- can be defined as

-

8=6+e, (1.1)

where & is the (common) parametric effect size, and ¢, is the sampling error of él., with
distribution N({}, Ji }, with J:f_ being the within-study variance for the ith study. Although

this variance needs to be estimated, nearly unhiased estimators are available for the most
common outcome variables in meta-analysis, so that parametric within-study variances
are typically considered as known in practice. Assuming a fixed-effect model implies using
WIS techniques and, since greater weights are given to the most accurate estimates of the
{common) parametric effect size, the inverse within-study variances can be employed as

the weighting factor.

The fixed-effect model has been the most frequently assumed statistical model for
meta-analyses published up to date in Psychology (cf. Schmidt et al., 2009]. It makes sense
to assume a fixed-effect model when the goal is to generalize results only to the set of
studies incduded in the meta-analysis and we can assume that the studies are estimating a
common effect in the population; in other words, a fixed-effect model isin order when we
can reasonably assume that the variability exhibited by the effect estimates in the meta-
analysis is due to within-study sampling error alone, not to true heterogeneity [ Borenstein
et al.,, 2010; Erez, Bloom, & Wells, 1996; Field, 2005; Hedges & Vevea, 1998). However,
since it is usually unrealistic to assume that the effect estimates have a common
population effect, some other alternatives are becoming more widely employed in meta-

analysis to the detriment of the fixed-effect model.
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1.2.2 The varying coefficient mode!

Laird and Mosteller (1990) proposed an alternate model that has been recently
advocated by Bonett {2008, 2009, 2010), who proposed to label it as varying coefficient
model. The main difference with the fixed-effect model is the assumption of
heterogeneity between the effect parameters, that is, it is assumed that each study
estimates a different parametric effect In this model, studies are not assumed to he
randomly sampled from a larger population of studies. Thus, as in the fixed-effect model,
conclusions from a meta-analysis carried out with the varying coefficient model can only

he extended to studies identical to those incorporated to the meta-analysis.

The varying coefficient model can be expressed with the formula

-

6 =6 +e, (1.2)

where & is the parametric effect for the ith study. Heterogeneity assumption seems a

more realistic option for most situations in Social and Behavioral Sciences (Apuinis et al.,
2011; Schmidt, 2010). Therefore, the varying coefficient model will generally be preferred

to the fixed-effect model.

1.2.3 The random-effects mode!

Apart from the fixed-effect and the varying coefficient models, the other leading
possibility in meta-analysis is to assume a random-effects modef. The random-effects
model assumes that each study estimates a different parametric effect and, in contrast to
the alternatives presented above, that the studies are randomly sampled from a broader
population of studies {Borenstein et al., 2010; Owerton, 1998; Sanchez-Meca & Marin-

Martinez, 2010; Schmidt et al., 2009). Once the set of studies under investigation is
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assumed to be a random sample, then the meta-analysis can be conceived as a double
sampling process (Raudenhbush, 2009; Viechthauer, 2007a): firstly, subjects are randomly
sampled for each study and, secondly, studies are randomly sampled for the meta-analysis
by extracting them from a larger population of potentiaf studies (Raudenbush, 2009, p.
297). Conclusions arising from a meta-analysis where a random-effects model is assumed
are applicable not only to identical studies to those included in the meta-analysis, but also
to other studies with similar, but not identical, characteristics that have heen carried out

or that can he conducted in the future.

The random-effects model can be expressed with the equation

-

b =fi+te+&, {1.3)

where f represents the hypermean, thatis, the mean from the population of parametric
effects, and £ denotes the difference hetween the parameter from the ith study and the
hypermean. It is assumed that &, ﬁN[ﬂ,fz], with 7> being the (total) heterogeneity

variance, which can be defined as the excess variation among the effect sizes over than

expected from the imprecision of results within each study {Thompson & Sharp, 1999). As

aresult, the effect size estimates E?I. are assumed to be normally distributed with mean
and variance D’j +7°, that is, 63'. = N(,U,O'E_ +'El}. As in the fixed-effect model, statistical

technigques applied in a random-effects model will routinely include weights. If the inverse

variance is the weighting scheme applied, this will now imply the addition of a second

variance term, 7 (e.g., Viechtbauer, 2007h).

Since itincorporates two variance components, results assuming a random-effects
model are usually more conservative than those ohtained when assuming the remaining
statistical models (Beretvas & Fastor, 2003; Brockwell & Gordon, 2001; Hedges & Vevea,

1998: Raudenbush, 1994). Also, the study weights will be more similar under a random-
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effects model — large studies lose influence while small studies gain influence — than under

a fixed-effect model { Borenstein et al., 2010; Schulze, 2004).

The random-effects model is more consistent than the two aforementioned
alternatives with standard scientific aims of generalization, and allows for summarizing
results in a more efficient way as the number of studies increases {Borenstein et al., 2010;
Hunter & Schmidt, 2000; Marin-Martinez & Sanchez-Meca, 2010 Raudenbush, 2009;
Sutton & Higgins, 2008). For those reasons, it has become widely applied for meta-analytic

studies in Psychology and many other disciplines such as Medicine and Education.

1.2.4 Model choice

There is a general consensus to consider that the main criterion for choosing the
statistical model in a meta-analysis should he the extent to which the meta-analyst aims
to generalize his/her results {Borenstein et al, 2010; Hedges & Vevea, 1998 Cverton,
1998 Sanchez-Meca, Lopez-Lopez, & Lopez-Fing, in press; Schmidt et al,, 2009). If the
meta-analyst intends to generalize results to a population of studies identical to those
included in the meta-analysis, then fixed-effect and varying coefficient are appropriate
models. The latter seem more realistic because, in contrast to the fixed-effect model, it
assumes that each study estimates a different effect parameter. In the unlikely event that
all studies estimate a common population effect and generalization is only intended to the
specific set of studies included in the meta-analysis, fixed-effect models constitute an

optimal choice,

More often, however, generalization is intended to a larger population of studies
than those included in the meta-analysis. The aim in a meta-analysis, as in any research
project, is usually to generalize the results beyond the integrated units. As Schmidt and

colleagues (2009) stated, “the usual goal of research (...] is generalizable knowledge (...},
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which requires generalization beyond the current set of studies to other similar studies
that have been or might be conducted” (p. 101). Consequently, random-effects models
are conceptually more appropriate for the majority of situations when conducting a meta-

analysis (Field, 2003, 2005; National Research Council, 1992).

However, applying random-effects models entails two main problems. Firstly, the
studies in a meta-analysis are not randomly selected from a larger population of studies in
practice and therefore, in the strictest sense, it is not appropriate to make inferences
about that superpopulation. This is a criticism raised by Bonett {2008, 2009, 2010} against
the use of random-effects models. Secondly, with a small number of studies, estimates of
the heterogeneity variances are very inaccurate, and this might affect the statistical
analyses conducted with random-effects models {e.g., Brockwell & Gordon, 2001, 2007;
Hardy & Thompson, 1996).

With regards to the first problem, as stated by Laird and Mosteller {1990), “making
inferences as if dealing with random samples contrary to fact is not a special issue for
meta-analysis, but for all of science and technology” (p. 14). Therefore, if this criticism was
extended to primary research, then no meta-analytic model would be appropriate, since
the vast majority of individual studies strictly violate the random sampling assumption {cf.
Edgington, 1966; Frick, 1998; Overton, 1998). Howewver, statistical inference techniques
are routinely applied in primary research, and primary researchers routinely generalize
their results to a population of units. Likewise, the meta-analyst will apply random-effects
models when hefshe can assume, on a reasonable basis, the set of studies included in the
meta-analysis to be a representative sample of a potential population of past and/or
future studies. To apply random-effects models, the meta-analyst must define, also on a
reasonahle basis, the characteristics of the potential population of studies to which

hefshe aims to generalize the results.

The other problem that the meta-analyst will have to face when applying random-

effects models refers to the difficulties in accurately estimating the heterogeneity variance
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when the number of studies is small. Borenstein et al. (2010) proposed several solutions
to this problem. One solution is to apply fixed-effect or varying coefficient models instead
of random-effects models. But if the meta-analyst aims to generalize his/her results to a
larger population of studies, this solution will not he satisfactory. Another solution is not
to do the meta-analytic integration if the number of studies is not high enough, which
means leaving unfinished an investigation which undoubtedly will have involved a great

effort.

Several authors provided meta-analysts with some guide to determine which
number of studies should he large enough to assume a random-effects model, and some
approximate values that have heen proposed in the literature are 20 (Aguinis et al, 2011;
Biggerstaff & Tweedie, 1997; Brockwell & Gordon, 2001; Field, 2005) and 32 studies
{Schulze, 2004). With a smaller number of studies, a reasonable goal is to generalize
results only to a population of studies identical in composition and variahility to those
included in the meta-analysis (Raudenbush, 1994; Sanchez-Meca, Lopez-Lopez, & Lopez-
Fina, in press) and, therefore, assuming a varying coefficient model will be a suitable

option for most situations.

An additional problem affecting random-effects models, and any other model
using WS methods, is that weights can lead to biased estimates if effect sizes and sample
sizes are correlated. This criticism comes from the finding in some meta-analyses of a
negative correlation hbetween sample size and effect size and, as a consequence, some
authors have proposed using OLS technigques (e.g., Shuster, 2010). The most frequent
reason for a negative correlation hetween effect size and sample size is the existence of
publication bias, in the sense that studies with small sample sizes need to estimate large
effect sizes to be published. However, as Thompson and Higgins (2010) argued, this is an
empirical issue, so that all meta-analyses should examine the correlation between sample

size and effect size and, if a high correlation is found, then the meta-analyst should
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investigate the reasons for this fact and decide whether or not to apply weighting

schemes.

In summary, since the goal in meta-analysis is to generalize knowledge, random-
effects models constitute an optimal alternative as long as some criteria are met (e.g.,
Biggerstaff & Tweedie, 1997; Schmidt, 2010). For that reason, the present dissertation is
focused on random-effects models, and most of the methods described throughout this
manuscript and compared by means of the simulation studies here presented are specific

to these statistical models.

1.3 Moderator analyses

Wwhen the different phases in a meta-analysis were described in Section 1.1.2.4, it
was mentioned that the first inferential goal in the statistical analyses is to obtain an
overall effect size estimate, together with its confidence interval. The overall effect size is
a very informative index in situations where studies integrated are similar enough to
discard any moderating effect. However, thisis rarely the case in practice, and usually the
studies will differ to some extent in one or more characteristics, leading to discrepant
results (Makambi, 2004; Sidik & Jonkman, 2005h). Under these conditions, the usefulness
of the mean effect size becomes very limited, and its interpretation can even he
misleading if one or more variahles are affecting the effect size estimates {Hartung,
Knapp, & Sinha, 2008; Viechthauer, 2008). Therefore, moderator analyses are justified in
the wast majority of scenarios and constitute a crucial issue in meta-analysis {Llipsey,

2009).

In addition to the overall effect size estimate, another inferential task that the
meta-analyst will typically attend hefore conducting moderator analyses is the assessment

of the amount of heterogeneity among the effect size estimates. From the last paragraph,
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it might he concuded that the presence of moderators will necessarily lead to a significant

result for the ) statistic. Nevertheless, that is not always the case because, as it was
previously noted, the statistical power of the (J statistic is strongly dependent on the

number of studies (e.z., Aguinis et al., 2011; Biggerstaff & Tweedie, 1997; Hardy &
Thompson, 1998; Pereira, Fatsopoulos, Salanti, & loannidis, 2010; Sagie & Koslowsky,
1993; Sanchez-Meca & Marin-Martinez, 1997; Thompson, 1994). Thus, it is advisable to

carry out moderator analyses regardless of the statistical conclusion of the ) statistic

{Baker et al., 2009; Sanchez-Meca & Marin-Martinez, 1992a).

The statistical analyses examining the influence of the study characteristics on the
effect sizes are known as moderagtor andgfyses. While simple subgrouping of the studies
can be used for that purpose [Borenstein et al., 2009]), meta-analysts are increasingly
employing so-called meta-regression models to study the influence of one or multiple
moderator variahles on the effect sizes (Thompson & Higgins, 2002). In a meta-regression
model, the effect size estimates are used as the dependent variable, and moderators are
incorporated to the model as independent variables. Not only continuous, but also
categorical moderators can be included in the model, using appropriate dummy coding

{Viechthauer, 2007a).

All three statistical models presented before can he applied to examine the
influence of moderator variables on the effect sizes (e.g., Bonett, 2009; Cooper et al.,
2009; Hedges & Olkin, 1985}, and the model choice can affect the statistical conclusions
and will determine their generalizahility (Aguinis et al., 2011). When a random-effects
model is assumed, the set of effect sizes is treated as a random variable. Since the
predictors included in the model are usually added as fixed effects, this approach then
leads to a mixed-effects meta-regression model. Such model will be described with more

detail in Chapter 2.

Wwhen results from the moderator analyses are interpreted, it is important to take

into account that these analyses cannot provide causal evidence, hecause the meta-
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analyst only observes retrospectively the characteristics of the studies, instead of
manipulating levels for each of those independent variables {Baker et al., 2009; Hardy &
Thompson, 1998 Thompson & Higgins, 2002; Viechthauer, 2007a). MNonetheless,
moderator analyses allow the synthesist to examine relationships that have never heen
explored bhefore in the individual studies (Botella & Gambara, 2002}, which may lead to
interesting hypotheses to he tested in future primary research. To this respect, the
researcher must be aware that a relationship found at the aggregate level (e.g., studies)
might not he present at the individual level, due to the so-called ecological fallacy

{Rohinson, 1950].

The selection of moderators should be guided by an expert on the field under
study (Baker et al.,, 2009; Raudenhush, 1994}, and the number of moderators to he tested
should he limited, in order to avoid false positive findings (e.g., Cohen, 1990; Hunter &
Schmidt, 2004; Thompson & Higgins, 2002), especially when the number of studies
integrated is small. In such cases, results should be interpreted wvery cautiously
{Thompson, 1994). Another issue that requires attention at this stage is the correlation
bhetween moderators, which might also lead to an overestimation of the moderator
effects [Konstantopoulos & Hedges, 2009 Viechthauer, 2008). Regarding types of
moderator variables, the potential influence of extrinsic and (especially) methodological
moderators should be discarded before analyzing substantive moderator variables {Lipsey,
2009]). The main purpose of this step in the analysis is to be able to obtain an explanatory,
or predictive, model that contains the subset of moderator variables more statistically

related to the effect sizes.

In summary, the sources of variahility hetween the outcomes of different studies
should he routinely investigated in meta-analysis, in order to increase the practical
relevance of the conclusions extracted from the synthesis and the scientific understanding
of the set of studies integrated (Thompson, 1994). If the aim of the meta-analyst is to

generalize results beyond the sample of studies, then a random-effects model must be
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assumed, leading to mixed-effects metaregression models. Due to their relevance in
meta-analysis, such models have received much attention in the last two decades, and
several methodological alternatives are awvailable at present for the estimation and
statistical testing of the main parameters in a mixed-effects meta-regression model. The
goal in the present dissertation was to compare several procedures to fit mixed-effects
meta-regression models under different realistic scenarios, with the aim to help meta-
analysts to make the best choice depending on the specific conditions of their databases.
With this aim, several Monte Carlo simulation studies to be presented in subsequent

chapters were carried out.

1.4 The Monte Carlo method: Applications to meta-analysis

The Monte Carlo method constitutes a very useful tool for researchers interested
in comparing the properties of several statistical procedures, when analytical treatmentis
not feasible {Schulze, 2004). It is a method usually applied to simulation studies. In a
Monte Carlo simulation study, several data sets are independently created by random
number generation, using functions based on probabhility distributions typically
implemented in any statistical package {Burton, Altman, Royston, & Holder, 2006). The
strategy of simulating real data from random number generators is the main feature of
the Monte Carlo method. When programming a Monte Carlo simulation study, the
researcher must define in advance the mathematical distribution and parameters from
which the random numbers will be obtained. In a second step, the procedures intended to
compare are applied to each data set. Typically, the procedures under study are applied to
a very large number of data sets, which requires iterative computations. To this respect,
the rapid improvement of computers has supposed a great help for researchers, and
Monte Carlo simulation studies are nowadays much less time-consuming than they used
to be just at the end of the past century (F. Marin-Martinez, personal communication,

Cecember 11, 2007).
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Simulation studies implementing the Monte Carlo method can provide empirical
estimation that could not be achieved in any other way (Serlin, 2000). Since the true
values are determined at first, these studies allow researchers to obtain accuracy
measures about the parameter estimates and/or their corresponding statistical tests
{Burton et al., 2006; Skrondal, 2000). Modeling the data distribution also allows the
researcher to explore the performance for methods which require a set of assumptions,
when some of them are not met (Harwell, 1992 Serlin, 2000}). In sum, these studies can
he considered as experiments where the goal is to analyze the “behavior” of the statistical

methods of interest under different scenarios.

In any simulation study, the data must be generated within the framework of a
prespecified model, and the set of levels of the manipulated factors is finite. As a
conseguence, conclusions must be restricted to the model/s and conditions accounted for
by the simulation {Schulze, 2004; Skrondal, 2000). Therefore, decisions affecting the
generation method for each data set should he made with the aim to indude a wide range
of realistic scenarios, that is, populations from which researchers are likely to extract their

samples {Serlin, 2000].

Because it is a relatively young methodology, there are several issues in meta-
analysis where consensus has not been reached vyet, and different procedures are
available to the meta-analyst at each stage of the statistical analyses. This situation makes
it necessary to carry out simulation studies in order to find out which techniques can he
expected to perform appropriately given the characteristics of a meta-analytic datahase,
which is intended to help the growing community of applied researchers conducting
meta-analytic reviews. Assessing the properties of different methods applied to meta-
analysis implies programming simulations where each data set contains data from a whole

meta-analysis.

The present dissertation is structured as a set of three empirical studies comparing

different methodological alternatives when conducting moderator analyses, by fitting
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mixed-effects meta-regression models. The way data were simulated and the comparative
criteria for the different procedures vary from one simulation to another, as it will be seen

later on.
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Chapter 2

Outcome variables in meta-analysis

2.1 Effect sizes

Cespite a set of studies have analyzed the same topic, they may have used
different measurement instruments ({e.g., different psychological tests], different
statistical analyses, or hoth. To accomplish the purpose of a meta-analysis, the result of
each single study has to be put into the same metric, so that all of the outcomes are
readily comparable {Viechthauer, 2008]). This can be done by means of effect sizes, which
alloww meta-analysts to put results from all studies into a common scale. Therefore, effect

sizes are typically the dependent variable, or the outcome variable, in a meta-analysis.

Throughout this section, an overview of the different situations where an effect
size index can be computed will he presented, together with a comprehensive definition.
Secondly, the requirements of effect sizes to he used as dependent variables in meta-
analysis will be briefly discussed. Lastly, effect sizes will be presented as an alternative to
sighificance tests. The next two sections will address the effect size indices considered in

the empirical part of this dissertation.
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2.1.1 Conceptualization and definition of effect size

It is very common to use the term “effect size” to refer to the outcome variable in
a meta-analysis. However, the effect size can he operationalized in very different ways
from a meta-analysis to the next. This is because the outcome variahle of interest in a
meta-analysis depends on such factors as the question that the meta-analysis intends to
address, the design implemented in the single studies, and how the relevant variables
have heen measured in the studies. As a consequence, the effect size extracted from each

single study can representvery different parameters from a meta-analysis to the next.

In Psychology and related areas, dependent variables are mostly continuous, and it
is common to find study designs which entail a group comparison. For example, in a meta-
analysis that intends to determine the effectiveness of a psychological treatment by
integrating studies that compared a treatment and a control group on a continuous
dependent variable at the posttest, the result of each study can be defined and guantified
by means of a standardized mean difference. If the single study applied a pretest-posttest
one-group design, then a different effect size index will have to be calculated, such as a
standardized mean change. In addition, studies can implement a more complex design,
including two groups with pretest and posttest measures, in which case the effect size
index will be a standardized difference between the mean change scores of the two

groups [ Borenstein, 2009 Morris, 2008; Morris & DeShon, 2002).

In addition to the comparison of two or more groups, another common purpose in
psychological research is the analysis of the association between two continuous
variables. Some examples of fields where this kind of analysis is usually found are
Heritability and Organizational Psychology studies. \When the aim of the meta-analysis is
to analyze the degree of association among two continuous variables, a correlation
coefficient is an optimal effect size index {Borenstein, 2009). The Fearson correlation

coefficient is the most popular one, although depending on how the variables have heen
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measured, other alternatives are also available to the researcher {[e.g., Spearman

correlation for ordinal variabhles).

Cichotomous dependent variables are less frequently employed in psychological
research, but they can easily be found in sciences like Medicine. In a typical situation, a
treatment and a control group are compared in terms of the proportion of occurrence of
an event in each group at the posttest {e.g., deaths, recoveries from a disease, etc.).
Several effect size indices can be computed for such designs, including the phi coefficient,
the difference between two probabilities, the risk ratio, and the odds ratio {Fleiss & Berlin,
2009). The selection of the effect size index in this case will depend on the design
implemented in the study, such as randomized two-group designs, cohort studies, or case-
control studies (Fleiss & Berlin, 2009). Those indices can also be computed for individual
studies in which one or more continuous dependent wvariables were dichotomized

{Sanchez-Meca, Marin-Martinez, & Chacén-Moscoso, 2003),

The aforementioned scenarios mostly refer to meta-analyses whose purpose is to
assess the effectiveness of treatments, programs, or interventions. However, there are
other gquestions that a meta-analysis can address. For example, many meta-analyses have
bheen carried out with the purpose to assess some psychometric property of the scores
from a test administration, such as the criterion validity, for which the effect size is
typically a correlation coefficient hetween the test scores and an external criterion
{Hunter & Schmidt, 2004). Other meta-analyses have assessed the reliability a given testin
different applications. This property is mostly estimated by computing a reliahility
coefficient for each study such as, for example, a coefficient alpha to assess the internal
consistency of the scale, a Pearson correlation hetween two applications of the test (test-
retest reliability) or hetween two parallel forms of the test, or a concordance coefficient
to assess interrater reliahility. The so-called refiaghifity generafization (Vacha-Haase, 1998)
approach will be described with more detail in Section 6.1 of this dissertation (see also

Sanchez-Meca, Lopez-Lépez, & Lopez-Fina, in press).
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In the Health Sciences, there is another kind of meta-analysis whose obhjective is to
assess the predision of a diagnostic test when a measurement instrument is used to screen
apopulation to detect cases (e.g., participants) with a given event such as, for example, to
have a disorder. In this case, the effect size from each single study is defined in terms of
the sensitivity and the specificity exhibited by the test {e.g., Tatsioni et al., 2005; Walter &
Jadad, 1999). One of the most recommended methods when assessing the accuracy of a
diagnostic instrument is the meta-analysis of receiver operating (ROC) curves {Botella,

Suero, & Huang, 2012, July; Chappell, Raab, & Wardlaw, 2009).

Finally, in other cases the purpose of a meta-analysis is to estimate the proportion
of cases with an event in the population. For example, a meta-analysis can be interested in
estimating the prevalence of a disorder in the population, and how the prevalence rates
vary among the studies. Another example is that of a meta-analysis focused on estimating
the recidivisim rate of delingquents once they have finished their sentences {e.g., Morales,
Garrido, & Sanchez-Meca, 2010]). In these cases, the effect size index is a proportion or a

percentage.

As a consequence of the great variety of faces that the effect size can adopt in
meta-analysis, the most comprehensive definition of effect size proposed in the literature
is that recently published by Kelley and Preacher {2012): “Effect size is defined as a
guantitative reflection of the magnitude of some phenomenon that is used for the
purpose of addressing a question of interest” (p. 140). Therefore, the guestion of interest

I

might refer to central tendency, wariahility, association, difference, odds, rate,
duration, discrepancy, proportionality, superiority, or degree of fit or misfit, among
others” (p. 140). An excellent collection of effect sizes available for researchers has

recently heen elaborated by Grissom and Kim (2012).
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2.1.2 Estimation and use of effect sizes in meta-analysis

As Hedges (2007) pointed out, it is important to distinguish the effect size estimate
in a given study from the parameter effect in that study. The effect size estimate will vary
to some extent from its parameter due to random sampling error, and this variahility is
accounted for by the within-study variance component in meta-analysis. Therefore, the
parameter effect size for a study can be conceived as the wvalue that would have heen
ohtained if researchers conducting that study had been able to measure (without error]
the whole population of reference. Regardless of the effect size estimator used in the
meta-analysis, it has to exhibit good statistical properties, such as unbiasedness,

consistency, and asymptotic efficiency (e.g., Kelley & Preacher, 2012].

The statistical methods typically applied in meta-analysis usually require a normal
distribution for the effect sizes and stable sampling variances ({Hedges & Clkin, 1985). To
accomplish these conditions, in some cases the effect sizes have to be transformed. For
example, risk ratios and odds ratios are transformed by their natural logarithm, the
Fearson correlation coefficient is transformed into the Fisher's Z, a proportion is
transformed into logits, and the coefficient alpha can also be transformed to normalize its
distribution and to stahilize the sampling variances by means of the Hakstian and

Whalen’s (1976) or the Bonett's {2002} transformations.

Moreover, when the meta-analyst has selected a set of studies for the quantitative
synthesis, it is not totally uncommon to find out that the computation of a single effect
size measure is not feasible for all of them. For those situations, conversion formulae
among most of the effect size indices enumerated along this chapter are available
{Borenstein, 2009; Fleiss & Berlin, 2009; Sanchez-Meca, Marin-Martinez, & Lopez-Lopesz,

in press).
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2.1.3 Effect sizes as an afternative to significance tests

Conclusions from empirical studies in Psychology and in many other fields are
usually guided by the results of significance tests. Two components that will determine
the statistical conclusion extracted from a significance test are the effect size and the

sample size. This relationship can be expressed as {Rosenthal & DiMatteo, 2001}
Significance test = Effect size x Sample size.

Thus, the p-value associated to a significance test is dependent on the magnitude
of the effect under study. At least one effect size index can he estimated for ewvery
sighificance test {Rosenthal, 1994; see also Grissom & Kim, 2012). Many authors have
encouraged researchers to compute effect sizes from their study results along the last
decades (e.g., Cohen, 1990, 1994; Kirk, 1996; Rosnow & Rosenthal, 2009; Schmidt, 2010;
Wilkinson & AFA Task Force on Statistical Inference, 1999). As a culmination of the so-
called effect size movement {Rohinson, Whittaker, Williams, & Beretvas, 2003), the
American Psychological Association (2010]) stated that, when using inferential techniques,

effect sizes “are needed to convey the most complete meaning of the results” (p. 33).

In contrast to the dichotomous outcome provided by statistical significance tests
{rejection vs. no rejection of the null hypothesis), effect sizes provide information about
the magnitude of the relationship of interest (Grissom & Kim, 2012; Schmidt, 2010). Due
to this fact, effect sizes allow scientists to dravw conclusions about practical significance or,
in the psychological field, clinical significance (Kirk, 1996). It should be remarked,
however, that the interpretation of the practical significance of an effect size is strongly
dependent on the research area, so that it must be endorsed by some expert opinion
{Knapp & Sawilowsky, 2001; Rohinson et al., 2003). Another strategy to interpret the
magnitude of an effect size in a given research area is to compare it with the results of any
meta-analysis published in the same area (Sanchez-Meca, Marin-Martinez, & Lopez-Lopesz,
2012, July). If none of these strategies is feasible, then a cautious interpretation of effect
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sizes in Psychology can be addressed by employing the standards proposed by Jacob
Cohen (1988).

The remaining two sections of this chapter will focus on the effect size indices that
will he employed in the simulation studies of this dissertation: the standardized mean
difference applied to studies about the effectiveness of psychological treatments, and the
coefficient alpha, as it is the reliability coefficient most commonly applied when assessing
the reliahility of the scores obtained from the administration of a measurement

instrument in Psychology and related disciplines.

2.2 Integrating mean differences: The  family

Cependent variahles are mostly continuous in psychological research, and the
most commonly employed study designs entail the comparison of two or more groups in
terms of the average scores on some psychological construct, typically measured by
means of a test or an interview conducted by an assessor. When the metric of the
dependent variable is different from one study to another, it is necessary to standardize
results in order to make them comparable from study to study. Consequently, the
standardized mean difference is the effect size index most frequently reported or

computed 7 posteriori in psychological studies.

A standardized mean difference can be computed to compare two groups (e.g.,
experimental vs. control group) in terms of their average scores on a continuous
dependent variable, usually at the end of an intervention program. This index is defined

with the expression

62 .HE _PHC'
o

) (2.1)
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where i and f_. represent the mean scores for the experimental and control groups in

the population, respectively, and & is the population pooled standard deviation.

For the ith study, assuming the scores of the subjects in the respective groups to
he normally distributed, the standardized mean difference can be computed with the

expression

g, =& (2.2)

with }_’I.E and }_’I.f representing the mean scores for the experimental and control groups,
respectively, and S, being the pooled standard deviation that, assuming equal group

variances [Ray & Shadish, 1996), is computed with

S =

Jm£—ﬂii+mm—”55, (2.2)

HI.E +n|'|:' - 2

with 72, and n. being the sample sizes for the experimental and control groups, and $

and 5. representing the variances of the group scores. Then, an unbiased estimator of &

in the ith study, 4,, can then be obtained with the expression {Hedges & Clkin, 1985}

3
d=|1- . )
' { A, +a.) —QJS' (2.4)

Moreover, an estimate of the sampling variance of 4. can be calculated with

. f..+ . d?
8 =5 iC 4 : . (2.5)
' jpIl'Eﬂl'lf' 2(ﬂf5 +”|'I:'}
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The sampling distribution of the 4 index is closely related to a non-central t-
distribution (Viechthauer, 2007h), and itis asymptotically normal. Optimal weights for this
index can he computed as the inverse of the sampling variances {Borenstein et al., 2010;
Marin-Martinez & Sanchez-Meca, 2010; Sanchez-Meca & Marin-Martinez, 1998h) and, for

that reason, this will be the weighting scheme employed along this dissertation.

Other related indices that will not be presented here can be computed to assess
the standardized mean change of a treatment group {Morris, 2000) or the differential
change from pretest to posttest when comparing two groups (Morris, 2008). All of these
indices can also be adjusted in order to account for the effect of a covariate (Grissom &
Kim, 2012). Lastly, Larry V. Hedges {2011) derived a new index to compute 4 values in
studies with a two-level sampling process where interventions are assigned to entire
clusters, a situation that is commonly found in educational research. Regarding the
interpretation of the value obtained when computing standardized mean differences,
when no better criterion is available, Cohen {1988} proposed values of 0.2, 0.5, and 0.8 as
reflecting effects of low, medium, and high magnitude, respectively. The value of the 4
index can be positive or negative, just depending on how the means in Equation (2.2) are

sorted.

2.3 Integrating reliability coefficients: Coefficient alpha and its

transformations

In Psychology, standardized tests are the most common measurement
instruments. YWhen a test is administered to a sample of subjects, the researcher or
clinician must assess the psychometric properties of the sample scores, because these
properties can affect results and statistical condusions based on data obtained with the
test (American Psychological Association, 2010; Wilkinson & AFA Task Force on Statistical

Inference, 1999). Since the psychometric properties will fluctuate from one application of
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the test to another, a reasonahble approach to obtain representative results for a given test
is the integration of the results obtained across different administrations of that
instrument. Hunter and Schmidt (1977, 1978, 1982) firstly proposed applying meta-
analytic technigques to the integration of validity coefficients obtained across different

administrations of the same test.

Apart from different types of validity, another property that must be evaluated
when applying a test is the reliahility, defined as the consistency or reproductibility of test
scores [Anastasi & Urhina, 1997; Crocker & Algina, 1986). As it will be detailed in Section
6.1 of this dissertation, Vacha-Haase {1998] proposed applying meta-analysis to the
integration of reliahility coefficients obtained in different applications of a psychometric
test. In this section, the main reliability measures employed as dependent variahles in

meta-analysis will be described.

According to the Classical Test Theory {Crocker & Algina, 1986; Gulliksen, 1987),
reliahility is defined as the guotient between the population variances of the true and
ohserved scores, which can also be expressed as a squared correlation. Since the true
scores are unknown in practice, some alternate procedure to estimate the score reliahility
is needed. Given its computational simplicity, coefficient alpha, considered as a measure
of internal consistency {Crocker & Algina, 1985, is the most widely reported reliahility
indicator in individual studies. For the ith sample, a coefficient alpha estimate can he

ohtained with the expression

I TAT
& :_=[| - ﬁ;’ ], {2.6]
X

where N, isthe sample size of the ith sample, 6': is the variance of the scores in the gth

item (any of the items of the test), and 6'}{ is the variance of the total scores. The

sampling variance of &, can be obtained with {EBonett, 2003}
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(2.7)

where J. denotes the numbher of items of the test applied to the ith sample and % is the

number of studies. Although the statement of a minimum reliability value can be
problematic for some situations (cf. Streiner, 2003}, it is generally accepted that a value of
0.7 reveals an appropriate reliability of the scores obtained in a given application of the

test [ Nunnally & Bernstein, 1994].

Standard meta-analytic technigues reguire some assumptions. One of these
assumptions is that the parameters whose estimates are integrated in the meta-analysis
are normally distributed, at least for large samples (Hedges, 2009). One probhlem arising
when integrating reliahility coefficients is that their sampling distribution is usually
asymmetric. For that reason, it seems sensible to apply some transformation on the
reliahility coefficients prior to the statistical analyses. Some reliability measures (e.g., test-
retest, parallel forms) are computed as a correlation, so that a suitable procedure to
transform these coefficients is Fisher's Z , which was proposed as a method to normalize
the distribution of Pearson correlations (Viechthauer, 2007h). The Fisher's 2Z

transformation is computed with the formula

Z, :llogz[l-}aﬁ], {2.8)

2 1-é,

and the sampling variance of this transformation is given by

G, = . {2.9)

When comparing Equations (2.7) and (2.9], it can be readily seen that variances computed
for the Fisher's Z transformation will he more stable than those obtained for
untransformed alpha coefficients {Sanchez-Meca, Lopez-Fina, & Lopez-Lopez, 2009).
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Although Fisher's Z has been the most frequently employed transformation for
the meta-analytic integrations of alpha coefficients published up to date (cf. Sanchez-
Meca, Lopez-Fina, & Lopez-Lopez, 2008, that transformation is theoretically appropriate
only when the reliahility coefficients are computed as a Pearson correlation, and that is
not the case for alpha coefficients. For that reason, Rodriguez and Maeda (2006)
recommended the use of a transformation firstly proposed by Feldt {1969) for two
samples and extended by Hakstian and Whalen (1976) for £ samples. This transformation

is obtained with the expression

T =3y1-¢&,. {2.10)

The sampling variance of this transformation is computed with the formula

51 187 (N, — 101 — & )"

2 (2.11)
g =)o —11)

Finally, another transformation was proposed more recently by Bonett (2002), in
order to compensate for the fact that tests and confidence intervals for alpha are based
on the usually unrealistic assumption {required for alpha coefficients) that the J parts of

the test are parallel. This method consists of a logarithmic transformation computed with
L =Log, (1-|&|) (2.12)

with sampling variance

2 Z'Ia {2.13}

o, = .
(J, —1HN, =2}
When some transformation is applied, the statistical results in a meta-analysis are
not directly comparable to those obtained using raw coefficients as the dependent

variable (Aguinis et al., 2011). To account for that issue, formulas for back-transformation
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are available for the aforementioned transformations. For Fisher's £ , values can bhe back-
transformed to the metric of the original coefficients with the expression
- g™% —1

é = _ (2.14)
g% +1

For the Hakstian-Whalen transformation, the equation is
& =1-T2, {2.15)

Lastly, when the Bonnet's transformation was employed, back-transformation is given by

g _1_ .k
c; =1-e". (2.16)

Equations (2.14) to {2.16) can he applied to mean coefficients alpha and their
confidence limits, the intercept in a regression model, and the mean reliahility values for
each category in an AMNCOVA. Howewver, to back-transform regression slopes into the
original metric, a different strategy is required, given that the value obtained by a simple

back transformation of the slope could be misguiding when YI.T is not a linear

transformation of coefficient alpha. An alternative, based on the definition of the slope as
the amount of change on the dependent variable as the predictor increases in one unit, is

outlined below.

Let YI.T =ﬁg +ﬂITX|. he a regression model where IﬁT is a transformed reliability
coefficient, ﬁg and ﬁlr are the model coefficients expressed in the transformation metric,
and X isapredictor. If X, is setto values of 0 and 1, then two different predictions are

obtained for the criterion, }’;T[{J] and YI.T[IL and the slope can be regarded as the

difference between hoth predicted values, that is:

YT [I]-¥7[0]= 87 + BTCh— BT + BT (™= 5T (2.17)
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In Equation {2.17), hoth the predicted wvalues and the slope are in the metric of the
transformation. An alternative for reporting the slope in the metric of the original

reliahility coefficient, ,SIS, is to calculate the difference between the hack transformations
of the predicted values ¥° [0] and Ir’l.a[]], using one of the aforementioned formulae.

{Mote that this procedure provides a result different to the simple hack-transformation of

the slope).

a8



Chapter 3

Mixed-effects meta-regression models

3.1 The model

In @ meta-analysis with £ independent studies, let ¥y denote a (ﬁcx 1] vector of
effect sizes {yl.}, and X a [ﬁcx(p+ 1)] design matrix of full column rank with p predictor

variables. The common practice in a meta-regression model is to assume effect sizes to be
a random-effects variable, allowing for a broader generalizahility of results (see Chapter 1
of this manuscript); on the other hand, the estimation method of the model coefficients
proposed by Hedges {1982) requires to assume the predictor variables as fixed effects.
This leads to a mixed-effects model, which can be expressed with the formula

{Raudenhbush, 1994)

y=Xp+u+e, {3.1)
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where P isa [[p+ l]x 1] vector containing the regression coefficients {ﬁo,ﬁ, ,,,,,ﬁy}, u is

a (£ x1) vector of independent between-studies errors {u.} with distribution N({],f; ),
and e is a (£x1) vector of independent within-study errors {e.}, each of them with

distribution N(D,D':f_ ) While D‘E_ is the within-study variance {or random sampling error}

for the ith study, 72

reg

represents the residual heterogeneity (or between-studies) variance,

that is, the remaining heterogeneity different to sampling error after adding one or more

predictor variables to the model (Viechthauer, 2008).

MNote that the mixed-effects model presented in Equation (2.1} is actually an
extension of the random-effects model, and that the latter could be formulated if X is
defined as a (kx1) vector of ones. In this case, P is now a scalar containing the
hypermean (mean of the parameter effects], and u is normally distributed with mean ©
and variance ¢°. For the remainder of this dissertation, 7 will be referred to as the total
heterogeneity variance, thatis, the heterogeneity variance in a model without predictors.

If, morecver, the error term u is suppressed from Eguation (3.1), then the model

becomes a fixed -effect model.

Regression coefficients {ﬁn,ﬂl,,,,, ﬂp} can be estimated using the weighted least

sqquares formula
b=(X WX)™ X' Wy, (2.2)

where Wis a (k xﬁc] diagonal matrix with the inverse sampling variances of the & effect

sizes as elements, that is, {l f{ﬂ'i +ff&,}} under a mixed-effects model. Nearly unbiased
estimators of D’f_ are available for all of the meta-analytic outcome variables presented in

Chapter 2, and therefore .:Tf_ is usually assumed as known in meta-analysis. Assuming

within-study variances to be known will work reasonahly well as long as sample sizes from

each study are not too small (Hedges & Pigott, 2004; Knapp, Biggerstaff, & Hartung, 2006).
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. - 1
Conversely, there are at least seven different estimators for ¢, and no consensus has

regd
bheen reached vyet in the scientific community ahout which one works best. These

procedures will be described in the next section.

3.2 Residual heterogeneity variance estimators

Sewveral alternatives have heen proposed in the literature for the estimation of the
total heterogeneity variance, ¢°, in random-effects models {Sanchez-Meca & Marin-
Martinez, 2008 Sidik & lJonkman, 2005h, 2007; Viechtbauer, 2005). Most of these

estimators have also heen extended to the mixed-effects model, allowing for the

1

reg "

estimation of the residual heterogeneity variance, 7-_. Itis important to remark here that,

for hoth random- and mixed-effects models, no estimator is expected to provide accurate
results unless the number of studies is large enocugh [(Aguinis et al,, 2011; Bonett, 2008,
2009; Borenstein et al., 2010; Brockwell & Gordon, 2001, 2007; Hardy & Thompson, 1996).
Since f:i& is included in mixed-effects weights, obtaining accurate estimates of this

parameter constitutes a crucial issue in mixed-effects meta-regression models (Biggerstaff

& Tweedie, 1997; Sidik & lonkman, 2005a).

In this section, seven different estimators of 7>, for mixed-effects models are

described. Four of these estimators are non-iterative, while three require iterative
computations. When an iterative procedure is implemented, a starting value must he
assigned to the parameter of interest, and then an adjustment value, A, is added to the
initial estimate. This process can continue until A is smaller than some preset threshold
{e.g., when A <107), although a limit for the number of iterations can also he set for
situations where convergence is never achieved. Adjustment formulae presented here for

these estimators are based on the Fisher scoring algorithm, which is robust towards poor
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starting values {lennrich & Sampson, 1976} and whose computational agility usually leads

to convergence guickly {Harville, 1977).

All of the estimators to be presented along this section can he succinctly expressed

after defining the matrix
P=W_-WX(X'WX)'X'W, {3.2)

where W is a diagonal weighting matrix whose elements can change from one estimator
to another, as further detailed below. Note that all equations presented in this section

also apply to the random-effects model, by setting p =0 and with X bheing a [k xl)

vector of ones.

A value of zero for 'Efﬁ suggests that all variabhility among the true effect sizes is

accounted for by the predictors included in the model (Viechthauer, 2007 a). Also, due to
random sampling error, most of the estimators to be presented can provide a negative
estimate, which is a value outside of the parameter space for a variance component. For
non-iterative estimators, the usual practice is to truncate negative values to zero. When
an iterative estimator is employed, truncation is also feasible, although a simple {and
preferable) strategy to avoid negative estimates is the use of step-halving (Jennrich &
Sampson, 1976), which implies multiplying the adjustment value, A, by 1/2 {e.g., first by
1/2, then by 1/4, then by 1/8, and so on) until it becomes small enough, such that the

resulting estimate stays non-negative,

Moreover, asitwill be seen on the hasis of the set of equations to be presented in
this section, the underlying logic for all methods is to estimate the residual heterogeneity
as the difference hetween the total variability among the true effect sizes not accounted
for by the explanatory variables included in the model, which can be guantified with the

heterogeneity statistic ¢J_ (Hedges, 1982), and the variahility expected from random
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sampling error alone, whose value is usually related to the degrees of freedom of the

model under assessment{e.g., df =k—p—1}.

The (J. statistic allows the meta-analyst to determine whether the model is well

specified or if, on the contrary, there is a significant amount of unexplained heterogeneity
among the effect sizes indicating the influence of additional moderators, additional

random heterogeneity, or both {Viechthauer, 2008). The {J_ statistic is obtained with the

expression
O =}"f'}'- (2.4)

with P defined in Equation (3.3). The . statistic is an extension of the homogeneity test

usually computed for the assessment of the heterogeneity among effect sizes in meta-

analysis, O, which was mentioned in Chapter 1 of this dissertation. Indeed, the ¢ test

can he computed with Equation (3.4} with X bheing a [k xl} vector of ones. Note that,
when calculating ¢ or (., the diagonal elements of W are given by W, =lfr3‘i_,

excluding the heterogeneity variance component (Beretvas & Fastor, 2003; Borenstein et

al., 2009; Hartung et al., 2008).

Under the null hypothesis f:";_?=0, the . statistic follows a chi-square

distribution with degrees of freedom equal to 4f =& - p—1. The rejection of the null

hypothesis would indicate a model misspecification, with a statistically significant
heterogeneity unexplained by the predictors in the model {Aguinis & Fierce, 1998).

MNonetheless, the {J. test suffers from the same problems mentioned in Chapter 1 for the
() statistic regarding statistical power (e.g., Pereira et al., 2010; Sanchez-Meca & Marin-
Martinez, 1997), so that a cautious interpretation of the statistical conclusion of {,

should be recommended for most situations.
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3.2.1 Hedges (HE) estimator

Hedges {1983; see also Hedges & Clkin, 1985) proposed a method of moments
estimator of 7> for random-effects models hased on ordinary least sqguares (OLS)
estimation. The estimate is ohtained by calculating the difference between an unweighted
estimate of the total variance of the effect sizes and an unweighted estimate of the
average within-study variance (Sanchez-Meca & Marin-Martinez, 2008). In a simulation
study comparing the bias and efficiency of different 7* estimators in random-effects
models, Viechtbauer (2005) found that the HE estimator was almost unhiased for most
conditions, although it vas less efficient than other procedures (HS, DL, ML, and REML

estimators) that will also he presented further below.

When moderators are included in the model, the extension of the Hedges method

for the estimation of the residual heterogeneity variance, > , can be written as

res 4

{Raudenbush, 2009)

. '‘Py —tr(PV)
t e =m—f (2.5)
E—-p-1

with r#{} denoting the trace of the matrix in between the parentheses, V denoting a
diagonal matrix with elements 5'; and with W equal to a (fx k) identity matrix I for

the calculation of P, in which case Equation {2.3) simplifiesto P=1- X(X'X} 'X'.

3.2.2 Hunter and Schmidt {HS) estimator

Hunter and Schmidt (2004) proposed an estimator of 7> for random-effects

models which, in essence, is given by
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(3.6)

where =5 w,y,/> W and w, =1/& . In this case, the HS estimator is equivalent to

the difference between aweighted estimate of the total variance of the effect sizes and a
weighted average of the within-study variances. In his simulation study, Viechtbauer
{(2005) found a negative hias for the HS estimator, which performed reasonably well in

terms of efficiency for most conditions.

Although no extension has been suggested yet for the HS estimator when one or
more covariates are included in the model, a logical proposal for computing this estimator
in mixed-effects models is given by (Viechthauer, Lopez-Lopez, Sanchez-Meca, & Marin-

Martinez, 2012}

y'f‘y—k
g2 YV K

< (3.7)
e W

with P again defined in Equation {3.3), and the diagonal elements of W given by

P

w.=1/&

s

L

3.2.3 DerSimonian and Laird (DL) estimator

The estimator of ¢° proposed by DerSimonian and Laird (1986) for random-effects
models, probably the most widely employed in meta-analyses up to date, is also hased on
the method of moments { DerSimonian & Kacker, 2007). Although it generally constitutes a
reasonahle alternative for the estimation of the total heterogeneity variance in meta-
analysis, this method has shown some problems in previous simulations, especially when

the parameter value vwas very large, which led to negatively bhiased estimates, and when
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the within-study variances were not homogeneous (Malzahn, Bdhning, & Holling, 2000;

Sidik & Jonkman, 2005h, 2007; Viechthauer, 2005).

When one or more covariates are included in the model, the DL estimator is given
by
2 _YPy-(k—p-1)

= = ‘ 3.8
Tor s (2.8)

with P defined in Equation (2.3} and the diagonal elements of W again given hy

3.2.4 Sidik and Jonkman (SJ) estimator

Another alternative to estimate the residual heterogeneity variance was proposed
by Sidik and Jonkman {2005b). In their simulation study comparing DL and %) estimators,

these authors reported a positive bias for the % method, which decreased for larger

parameter values. Due to the negative hias of the DL estimator for large ¢° values, as
mentioned in Section 3.2.3, the Sl estimator was found to be a good alternative for
parameter values equal or greater than 0.50 in random-effects models using log-odds
ratios as the effect size index (cf. Sidik & Jonkman, 2005h]). The S1 estimator is ohtained by

starting with an initial (rough) estimate of the heterogeneity variance, denoted by 'EDZ and

given by

= 2
f§=—zl{y;{ Y , (2.9)

where ¥ is an unweighted mean of the effect sizes. In a mixed-effects model, the =J

estimator is computed with the expression
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, 2,10
R — (3.10)

with P defined in Equation {3.32) and elements {ﬁ)l. =]f(5'i +'f§}} for the diagonal matrix

W. In contrast to the other procedures presented along this section, the %) estimator
alhways provides a non-negative value, so that it never requires truncation (cf. Sidik and

Jonkman, 2005h).

3.2.5 Maximum Likelihood (ML) estimator

The ML estimator is based on the joint likelihood of the regression coefficients, p,
and the residual heterogeneity variance, ffm {Raudenhbush, 1994). Since this estimator

does not account for the uncertainty about the unknown regression coefficients, it is
expected to provide negatively hiased estimates in random-effects models, as it was

found in several simulation studies (e.g., Sidik & Jonkman, 2007; Viechthauer, 2005).

The ML estimator requires iterative computations. The process can be expressed

with

=32

Cuer renf

,?2

Men

+A, (2.11)

where '?f:w is the current estimate of 2, its starting value being that obtained with any

2l
of the other (non-iterative] estimators. For maximum likelihood estimation, the
adjustment factor in mixed-effects models using the Fisher scoring algorithm is equal to

y' i’i’y - Ir{ﬁ"}

A = —inwi (2.12)
e 7l W)
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with P defined in Equation (2.3} and the diagonal elements of W given by

W =1f[6'i_ + %, ) - Therefore, after each iteration, W is firstly updated, then P, and

finally A,, canbecomputed to obtain %5, .

3.2.6 Restricted Maximum Likelihood (REML) estimator

Another iterative procedure is the REML estimator, which overcomes the negative
bias observed in the ML method (Thompson & Sharp, 1999), because it takes into account
the uncertainty about the regression parameter estimates (Raudenbush, 1994). On the
other hand, several simulation studies found a loss of effidency in REML compared to ML
under a random-effects model {e.s., Sidik & Jonkman, 2007; Viechthauer, 2005).
Moreover, Sidik and Jonkman (2007) found a negative hias in the REML estimator for large
values, although the magnitude of that hias was smaller than that obtained for ML and DL
estimators, also included in their study. For that reason, these authors warned against the
use of DL, ML, and REML estimators unless the heterogeneity variance parameter, 7°, is
expected to bhe relatively small (Sidik & Jonkman, 2007, p. 1980). It should be noted,
however, that most of the values set for ¢* in the simulation conducted by Sidik and
Jonkman would be considered as extremely large in Psychology (range O : 1.75 using log-

odds ratios as the effect size index).

The REML estimator has been recommended by Raudenbush {2009) for mixed-
effects models, where the adjustment for this procedure can be computed with the

expression

_yPPy—u(P)

A =
Rt i (PP

(3.13)
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with P again defined in Equation (3.2) and elements {ﬁ’; =1f{6‘i_ +42 }} for W.

Cecrrent

3.2.7 Empirical Bayes (EB) estimator

The last estimator considered in this section was first proposed by Morris {1983)
and later adapted to the meta-analytic context (Berkey, Hoaglin, Mosteller, & Colditz,
1995]. This estimator can be derived based on empirical Bayes methods (Morris, 1983)

and will therefore be denoted by #%,. Sidik and Jonkman (2007) reported a good

performance for this estimator under a rand om-effects model in terms of bias and mean
squared error. Again, there is no cosed-form solution, so that iterative methods must be
used. Under a mixed-effects model, the adjustment required for the EB estimator at each

iteration is computed with

_kHk-p-DyPy—k

A -
= (W)

) (3.14)

with P again defined in Equation (2.3) and elements {ﬁfl. =1f{5‘i +£2 }for W,

Cetrrdes

Furthermore, the EB estimator can he shown to be identical to another estimator,
going back to the work of Paule and Mandel {1982), which was recently described in the
meta-analytic context by DerSimonian and Kacker {2007). In particular, for the mixed-

effects model, the Paule and Mandel’s estimator is that value of €2, for which
yPy=k—-p-1, {2.15)

with the diagonal elements of W given by w, =1f{c‘i‘i +*fi3]. The equivalence between

these two estimators leads to some interesting properties to be described further below.
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3.3 Hypothesis tests for the model coefficients

Once an estimate of ffjﬁ has been computed, the vector of model coefficients can

he obtained with Equation (3.2). The next step in a meta-regression is then to determine
the precision of these estimates and to test whether the moderators actually exert a
statistically significant influence on the effect sizes. Five alternatives for testing the

regression coeffidents are presented helow.

The first one is a Wald-type test (Raudenbush, 2009), and it is the one that is most
commonly applied in practice. Accordingly, this approach will be referred to as the
standard method. Despite its wide use in meta-analysis, some authors argued that this
method does not take into account the uncertainty of working with estimated variances,
and that might produce misleading findings (Brockwell & Gordon, 2001; Van Houwelingen
et al.,, 2002). To offset that limitation, Knapp and Hartung (2003} developed anew method
by incorporating a correction factor to the wraditional formula. Also, their method assumes
a tdistribution for the coefficient values, instead of a normal distribution. The third
method presented in this section makes use of a robust estimate of the variance-
covariance matrix of the model coefficients. The fourth method here presented is a
likelihood ratio test, which compares the likelihood of the model with and without the
predictor of interest. Finally, a permutation test is described. While the latter is
computationally more demanding than the other tests, it is, in principle, free of

distributional assumptions.

3.3.1 Standard method

2 2 - . .
If T, and ¢ were known, then the variance-covariance matrix of the model

coefficients computed with Equation (2.2) would be equal to £ =(X' WX} ', with the
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diagonal elements of W given by w, =]f'(D’3_ +72.). However, since hoth 'z'i,, and D‘E_

reg
need to he estimated in practice, we cannot compute X directly. The standard approach

is to substitute the estimates of f:; and D’j for the unknown variance componentsin W,

vielding an estimate of £ given by the equation

B, = (X WXy, {2.16)

where the diagonal elements of W are equal to W, =1f{6‘i + %2 ). The test statistic for a

particular model coefficient can then be obtained with

b

—
z, —Ssﬁ_. (32.17)

I

with E?j. heing the [j+1] element of the b vector, obtained with Equation {3.2), and S;_TD

heing the square root of the [j+1,j+1] element of the ism matrix, computed with

Equation {2.15). The value ohtained by Equation {3.17] is then compared against the
critical values of a standard normal distribution for a desired significance level (e.g., +1.96
for r =.05, two-sided). Although this has been almost the only method employed to test
coefficients from mixed-effects meta-regression models up to date, its adequacy is
strongly dependent on the accuracy of the sampling variance estimates. Consequently, if
those estimateswere inaccurate, then the statistical conclusion provided by the standard
method might not be correct (Brockwell & Gordon, 2001; Knapp & Hartung, 20032; Sidik &
Jonkman, 2005a].
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3.3.2 Knapp-Hartung method

The Knapp-Hartung method (Knapp & Hartung, 2003} is based on a corrected

estimate of the variance-covariance matrix of the model coefficients, given by

. =c(XWX)~, (3.18)
where
= YPy (2.19)
E-p-1

with P again defined in Equation {2.3) and the diagonal elements of W given hy

W. =1fl[r5‘§_ +%2% 3. The test statistic for a particular model coefficient is then computed

res

with the expression

b,
ke Y
3 il (3.20}

with &, denoting the corresponding element of b, computed with Equation (3.2}, and
Sf_"" heing the square root of the respective diagonal element of ﬁm, ohtained with

Equation (3.18). Under the null hypothesis !8; =0, itis assumed that IfH follows a t-

distribution with df =k — p—1 degrees of freedom, according to the authors (Knapp &

Hartung, 2003). Note, however, that some other values for the degrees of freedom have

heen proposed (e.g., Berkey et al., 1995).

In their simulation study, using log risk ratios as the dependentvariable, Knapp and
Hartung (20032} found that their new method outperformed the standard one in terms of
adjustment to the nominal significance level. Sidik and lonkman (2005a) obtained similar
results when comparing both methods.
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For known variance components, the expected value of the correction factor ¢ is

one {Hartung et al., 2008). Also, when using the EE method for estimating 7~ , presented

reg d
in Section 2.2.7, ¢ is always equal to one for positive values of ¢, (Knapp & Hartung,

2003).

Knapp and Hartung (2003) originally proposed that the correction factor « should
always bhe equal to or greater than one. A value smaller than one is likely to be obtained
with Equation (2.18} in scenarios where the effect sizes are very homogeneous, so that

the total variability unaccounted for by the moderators, &, is even smaller than its

expected value {e.g., df =& —p—1) when 72 =0. However, when working with small

rei
samples (e.g., small number of studies, small average number of participants per study, or
hoth), such counterintuitive results can easily happen, since meta-analytic estimates are

generally guite inaccurate in those situations (Hedges, 2009).

Following the recommendations provided by Knapp and Hartung {20032], the
correction factor ¢ should he truncated to one when a smaller value is ohtained. With this

practice, the variance estimate of bj. obtained with their method would never he smaller

than the one obtained with the standard method, always leading to more conservative
tests than those obtained with the standard approach. However, this practice may
actually lead to over conservative results and, consequently, to a loss of power, therebhy
increasing the chance that relevant moderators may be missed. This will he examined with

more detail in Chapter 5 of this dissertation.
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3.3.3. Huber-White method

The Huber-White method is hased on the work of Huber {1967) and White (1980)
and was first proposed in the meta-analytic literature by Sidik and Jonkman (2005a). For

this method, the variance-covariance matrix of the model coefficients is estimated with
£, =(X'WX) 'XWE*WX(X' WX) ', {2.21)

where E isa diagonal matrix with elements obtained from the vector e =y - Xb, and

-

with {ﬁul. =1f{6':f_ + 12 }} as the elements for W. The test statistic for a particular model

reg

coefficient is then given by Equation (2.20), except that S;H is replaced with S;’_’w. Again,

the test statistic is compared against the critical values of a tdistribution with

df =k — p—1 degrees of freedom.

The Huber-White method did not consistently improve the performance of the
standard method in the simulation conducted by Sidik and Jonkman {2005a), using the
empirical Type | error rate as the comparative criterion. However, a simple correction was
recently proposed {Hedges et al, 2010). Incorporating this proposal to Equation (3.20)
leads to the expression

b,
i L (3.22)

s fkik—p-1)°

which vields a more conservative test, especially when % is small. Howewver, it remains to
be determined how the Huber-White method with this correction performs in comparison
to the other approaches considered in this section. This will also be analyzed in Chapter &5

of this dissertation.
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3.3.4 Likelihood ratio test

All of the approaches described so far are based on a test statistic that divides the
model coefficient to he tested by some estimate of its standard error. An alternative
approach is based on likelihood ratio testing (Bates, 2011, March; Guolo, 2012; Huizenga,
Visser, & Dolan, 2011). This approach can be used in the context of ML estimation, and it
is hased on the change in the deviance of two models, the first including the predictor of
interest and the second excluding it [in a meta-regression with a single predictor, the

second model would be a random-effects model where X isa (£ x 1) vector of ones|. The

likelihood ratio testis computed with the expression

xi= e, (3.23)

where £, is the likelihood of the null model and £, is the likelihood of the model including

the jth moderator. The result is compared against the critical value of a chi-sgquare

distribution with one degree of freedom (e.g., 3.84 for o =0.05).

Frevious simulation studies {Guolo, 2012; Huizenga et al.,, 2011) found a
performance somewhat less than good for the likelihood ratio test, with empirical Type |

error rates clearly over the nominal significance level.

3.3.5 Permutation test

Finally, the use of permutation tests has heen suggested as another alternative in
the meta-analytic context (Follmann & Proschan, 1999; Higgins & Thompson, 2004). To

carry out the test for a particular model coefficient, we first obtain Z;, the test statistic

bhased on the standard approach, given by Equation (2.17). Then, for each of the k!
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possible permutations of the rows of the X matrix, the model is refitted and the value of

the test statistic is recomputed. Note that each permutation requires that 2 p,and E

regd

are re-estimated. Letting Z'f denote the value of the test statistic for the mth

permutation, the {two-sided) p-value for the permutation test is then equal to two times
the proportion of cases where the test statistic under the permuted data is as extreme or
more extreme than under the actually observed data. In other worids, the p-value is two

times the proportion of Z’; values greater than zZ; when zZ; is positive, or two times the

rate of ZT values smaller than zZ; if that statistic is negative.

Mote that £ must be at least as large as 5 before it is actually possible to obtain a
p-value below & =.05 (e.g., for 41=24 permutations, the p-value can never he smaller
than 2x1/24 = 0833, while for 51=120, the p-value can be as small as (01587). On the
other hand, as % increases, k! guickly grows so large that it may not be possible in
practice to obtain the full set of permuted test statistics. In that case, one can
approximate the exact permutation-hased p-value by going through a certain humber of
random permutations of the rows of the X matrix. Using a sufficiently large number of

such random permutations ensures that the resulting p-value is stable.

The permutation approach may bhe especially appropriate when the data cannot he
regarded as a random sample from a given population (Manly, 1997). Moreover, this
method is, in principle, free of distributional assumptions. Howewver, the use of a
nonparametric approach may bhe less efficient than parametric methods, potentially

resulting in a lower statistical power.
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3.4 Model predictive power

After estimating the model parameters {72

*.. B, and I} and testing the
sighificance of the model coefficients, another important objective in mixed-effects meta-
regression models is the estimation of the predictive power of the model. This parameter
is represented by P® (note that P here denotes the capital Greek letter rfio), and can be
defined as the proportion of variance among the true effect sizes that can be accounted
for by the predictors included in the model. Therefore, this parameter will only take values

between 0 and 1. The estimates of this parameter are usually represented with the R*

index.

The R® index is an effect size measure which complements the statistical
conclusion provided by the significance tests of the regression coefficients, presented in
the previous section of this chapter. The R* index is usually interpreted as a percentage
of variance accounted for and, in Psychology and related fields, the guidelines stated by
Jacoh Cohen (1988} can be followed. According to Cohen, a 10% of variance accounted for
by the predictor/s reveals an effect with practical significance of low-medium magnitude,
while values around 25%: already reflect an effect size of hish magnitude. Nevertheless,
these orientations should be contextualized and revised in the specific content area of the
phenomenon under study (Knapp & Sawilowsky, 2001), with the help of the R® effect
sizes typically found in the papers and meta-analyses on the topic, as well as the opinion

of experts in the area.

When regression models are fitted using OLS technigues, the R* index is
computed as the guotient between the sum of squares due to the regression and the total

sum of squares, thatis, R* = ,':?SRE!‘m,a,l.m/,‘:?,‘:?Tﬂ,mf . Howvever, this strategy is not suitable for

meta-regression models hecause part of the total wvariahility, due to sampling error
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{within-study variances, D':f_ ), cannot he explained by the predictors in the linear model®

{Aloe et al., 2010; Konstantopoulos & Hedges, 2009; Rodriguez & Maeda, 2008). In other
words, “the only variation that linear models of effect size can explain is this between-
studies variation” {Aloe et al.,, 2010, p. 276). Thus, a different method is reguired for

. 1 . . .
computing an E° indexin meta-regression models.

An alternative was proposed by Raudenbush {1994). The E* index proposed by
Raudenbush is based on the re-estimation of the heterogeneity {or hetween-studies)
variance after adding one or more predictors to the model. The rationale for this index is
that the influence of the moderators will be reflected on the residual heterogeneity

variance, 7°_, which will be smaller than the total heterogeneity variance, 7°, as a result

regd

of including explanatory wariables accounting for part of that heterogeneity. The
comparison of both wvalues provides the percentage of wvariance explained in the
population, P*, and this criterion can be used to assess the model predictive power

{Raudenbush, 2009). In practice, £° and 'Eis must be used instead of the population

values, allowing for the computation of the R index with the expression (Borenstein et

al., 2009)

'E'Z
1 _ rég
R _1—[?} (3.24)

If a negative value is obtained when applying Equation (2.24), it is truncated to zero, and
the interpretation is that all of the wvariahility among the true effect sizes remains

unexplained after including the moderator(s).

* An exception to this s when meta-analyzing the raw data from a set of individual studies, in which case
withinstudy variability can be accounted for. For more details on se-called individual participant data meta-

analyses, see, for example, Cooper and Patall {2003).

o8



The method proposed by Raudenbush {1294), therefore, constitutes a reasonable
alternative to estimate the model predictive power in mixed-effects meta-regression
models. Note, however, that moderator analyses can also be conducted in meta-analysis
by assuming a fixed-effect model. For the so-called fixed-effect models with moderators,
Konstantopoulos and Hedges {2009) suggested that Equation (2.24] could also be
implemented. In that case, the total heterogeneity variance, 72, which is estimated in the
model without predictors (fixed-effect model), is assumed to bhe wholly due to the

influence of one or more unidentified moderators. Regarding the residual heterogeneity

2
reg

variance, 7., , it reflects the influence of one or more additional moderators that were not

included in the fixed-effects meta-regression model. The same rationale can also he

applied if mod erator analyses are conducted by assuming a varying coefficient model.

Both heterogeneity variance estimates employed in Egquation (2.24) can bhe
ohtained using any of the methods presented in Section 2.2. As a consequence, there are
at least seven different methods to compute the R? index using this proposal, if the same
estimation method is employed for hoth estimates, as recommended hefore {Aloe et al,,
2010). K is important to note that, due to sampling error, the formula proposed by

Raudenbush may require or lead to truncation in several situations. First, *?::_? can he

larger than £° for a given meta-analytic data set, especially with small samples (small
number of studies, small sample sizes, or both}, leading to a negative ®® value that is
typically truncated to zero in practice {indicating that all of the heterogeneity among the
effect sizes remains unaccounted for after including the moderator(s) in the model).
Second, a negative value of #° truncated to zero leads to division by zero in Equation
{2.24), in which case E® is undefined. It is then common practice to set (or truncate) the
value of R* to O (indicating that none of the heterogeneity among the effect sizes is
accounted for by the moderators, given that there appeared to be none to begin with).

Finally, with a positive value of £, a negative value of '?f;s truncated to zero will lead to
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an R’ wvalue of 1 (indicating that all of the heterogeneity among the effect sizes is

accounted for the moderators included in the model).

Since an estimate of the heterogeneity variance is included in both the random-
and the mixed-effects model weights, the accuracy of these estimates might also affect
the result of other statistical analyses, such as the computation of an overall effect size
estimate and its confidence interval in a random-effects model or the estimation and
testing of the model coefficients in a mixed-effects meta-regression model. Howewver,

. . a 1 .
getting accurate estimates of 7~ and ¢, seems even more crucial for the assessment of

the predictive power in meta-regression models, because the & index computed with
Equation (32.24) requires estimates hoth of the total and the residual amount of
heterogeneity (and hence, any error in these estimates may compound). The performance
of the different methods for calculating %* will be considered in further detail in Chapter

4 of this dissertation.
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Chapter 4

Study 1: Assessing predictive power in

mixed-effects meta-regression models

4.1 Objectives, previous simulation studies, and hypotheses
4.1.1 Objectives of the study

The availability of different procedures to estimate the heterogeneity variance in
both random- and mixed-effects models poses a problem to the meta-analyst, because
the estimator choice may have an influence on the meta-analysis results. Since an
estimate of the heterogeneity variance is included in both random- and mixed-effects
weights, the accuracy of these estimates might affect the result of statistical analyses such
as the computation of an overall effect size estimate and its confidence interval in a
random-effects model, or the estimation and testing of the model coefficients in a mixed-
effects meta-regression. Getting accurate estimates of the heterogeneity variance seems

even more crucial for the assessment of the predictive power in meta-regression models
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which, when using the procedure proposed by Raudenbush (1994; see also Section 2.4 of

this dissertation], takes into account hoth the total and residual heterogeneity variance

estimates.

In the present study, all seven heterogeneity variance estimators detailed in
Section 2.2 were considered (that is, HE, HS, DL, =1, ML, REML, and EB methods), and
applied to simulated meta-analyses where the standardized mean difference, already
defined in Equation {2.4), was the effect size index. This simulation compared the accuracy

for the methods under different scenarios for the estimation of:

* The total heterogeneity variance in a random-effects model: ¢° parameter.

®  The residual heterogeneity variance in a mixed-effects meta-regression model with

one predictor: 7> parameter.

reg

o The predictive power of a mixed-effects meta-regression model with one
predictor, using the proposal of Raudenbush (1994; see also Section 3.4): P?

parameter.

4.1.2 Previous simulation studies

Several simulation studies have already been conducted with the aim to compare
the accuracy of various estimators of the heterogeneity variance in meta-analysis. Some of
these studies employed effect size indices for dichotomous measures (e.g., Malzahn et al.,
2000; Sidik & Jonkman, 2005b, 2007), while others considered indices for continuous

variahles {e.g., Van den Moortgate & Onghena, 2003; Viechthauer, 2005).

In general, a positive hias has been found in the 51 estimator for small to medium
parameter values (Sidik & Jonkman, 2005h, 2007), while a negative hias was reported for
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the H= and ML estimators, as well as for the DL method when estimating large parameter
values {Malzahn et al., 2000; Viechthauer, 2005). The HE method was found to perform
appropriately in terms of hias, although it was less efficient than other estimators
(Viechthauer, 2005]. Finally, good performance was observed hoth for the REML and the
EE estimators when considering hias and efficiency criteria jointly (Sidik & Jonkman, 2007;

Van den Noortgate & Onghena, 2002; Viechthauer, 2005).

All of these simulation studies focused on random-effects models. Therefore, it is
not certain to what extent these trends would also apply to mixed-effects meta-regression
models. Moreover, these studies do not indicate whether one of the various estimators
for ¢° and ff“ would he preferable when computing the R* index computed with
Equation {2.24). For example, even though hiases have heen found in some of the

heterogeneity estimators, since B’ is based on the ratio of the residual and total amount

of heterogeneity, it is not possible to predict whether these hiases would carry over when

computing B* or may in fact essentially cancel each other out.

4.1.3 Hypotheses of this study

Cue to the results showed in previous simulations, it was expected that:

1. The 51 method would provide positively hiased estimates of the heterogeneity
variance in random-effects models, improving its performance for large parameter

values, as reported by the authors (Sidik & Jonkman, 2005h, 2007).

2. The HS and ML methods would provide negatively hiased estimates of the
heterogeneity variance in random-effects models, as it was previously found

{Viechthauer, 2005].
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10.

The HE method would perform inefficiently when estimating the heterogeneity

variance in random-effects models, as it was reported before (Viechthauer, 2005).

The DL method would provide negatively biased estimates of the heterogeneity
variance in random-effects models for large parameter values, as warned by

several authors (e.g., Malzahn et al., 2000; Sidik & Jonkman, 2005h).

The REML method would perform appropriately {in terms of hias and efficiency)
for the estimation of the heterogeneity wvariance in random-effects models, as

reported by Viechthauer (2005].

The EBE method would perform reasonably well {in terms of hias and efficiency) for
the estimation of the heterogeneity wvariance in random-effects models, as

previously found (Sidik & lonkman, 2007]).

The trends for the different estimators under a random-effects model would he
similar when estimating the residual heterogeneity variance in mixed-effects meta-

regression models with one predictor.

The most precise methods in the estimation of the heterogeneity variances (DL,
REMVL, and EE methods) would also be the most accurate options when estimating

the predictive power of mixed-effects meta-regression models with one predictor.

The HS, ML and 5] methods would provide biased estimates of the predictive

power of meta-regression models with one predictor.

The number of studies would exert the greatest influence on the accuracy of the
different methods, and its influence would be even more critical when estimating
the model predictive power, which is computed as a ratio between two

heterogeneity variance estimates.
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11. A larger number of participants per study would lead to more accurate results in

the estimation of the different parameters considered in this study.

4.2 An illustrative example

Else-Juest, Hyde, and Linn {2010} published a meta-analysis integrating results
from the Program for International Student Assessment (PISA) in different countries in
20032, This report evaluated 15-year old students’ performance in several subjects. The
authors focused on mathematics and, since they were interested in gender differences,
effect sizes were defined as standardized mean differences hetween the marks achieved

by hovys and girls. Positive values revealed a hetter performance for hoys.

One of the coded characteristics for each country was the women’s share of
parliamentary seats, used as a moderator in this example. Twenty countries from different

parts of the world were selected to illustrate the methods described earlier. Tabhle 4.1

presents the effect size, 4, , its sampling {within-coun try) variance estimate, 5':_, and the

moderator value, Farf,, for each of the 20 countries.

The set of effect sizes reported in Table 4.1 ranged from -0.17 to 0.25. These
values were obhtained for Icelandic and South Korean students, respectively. The women's
share of parliamentary seats ranged hetween the 4% found for Turkish politicians and the

45% obtained for their Swedish colleagues.
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Tahle 4.1 Cata from the meta-analysis published by Else-Quest and colleagues (2010}

Country d. ﬁ'i Parl. | Country d. 5-:{ Parl,
Australia 0.06 L0003 0.27 Mexico 0.13 0001 016
Belgium 0.07 .0a0s 0.25 The Netherlands 0.06 0010 0.33
Brazil 0.16 .0oog 0.09 Foland 0.06 .0oog 0.21
Canada 0.13 0002 0.24 South Korea 0.25 0008 | 0.06
France 0.09 .0oog 012 Spain 0.10 0004 0.27
Germany .09 0009 021 Sweden 0.07 0009 0.45
Greece 0.21 .0oog 0.09 Thailand -0.05 0008 0.0
Iceland -0.17 L0012 0.25 Tunisia 0.15 0008 012
Italy 019 L0003 0.10 Turkey 0.14 0008 0.04
Japan 0.08 .0oog 0.10 Ush 0.07 0oo7 0.14

All seven methods compared in this study were employed to estimate the total

heterogeneity variance in a random-effects model, as well as the slope, the residual

heterogeneity variance, and the proportion of variance accounted for by the moderator in

a mixed-effects meta-regression model with one predictor. Results are presented in Table

4.2.
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Table 4.2 Estimates in random- and mixed-effects mod els using data from Else-Cuest and

colleagues (2010}

Method £ Bu 22 P
HE LO0F7 - 3870 0061 2120
HS L0052 - 3849 L0046 J207
DL 0058 - 3861 L0054 0681
=l L0076 - 3870 0081 JE81
ML 0069 - 3858 L0051 2544

REML L0073 - 3867 0058 2060
EE L0075 - 3868 L0058 2083

As the slope estimates show, a negative relationship was found with all methods,
indicating that a higher percentage of women in the parliament was associated with
smaller advantages for boys in the mathematics test. Regarding the total heterogeneity
variance, the lowest estimates were obtained using HS and DL methods {.0052 and .0058,
respectively], while the highest estimates were provided by HE, =), and EB methods
(.0077, .0076, and 0075, respectively). Residual heterogeneity variance estimates also
showed some variahility, with values ranging between .0046 (HS estimator) and .0061,
obtained with the HE and SJ estimators. These differences led to notable variation among
the estimates of the model predictive power depending on the estimator used. The R*®
values showed fluctuations from a 6.9% of heterogeneity accounted for by the moderator

(DL estimator) to the 25.4% obtained with the ML estimator.
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4.3 Simulation study

A simulation study was programmed in R using the metagfor (Viechthauer, 2010)
package. Meta-analyses of & studies were generated, each of them hased on a two-group
design, comparing subjects in an experimental (E} and a control (T} group with respect to
some continuous dependent variable. The scores of the nf and ”.-C subjects in the
respective groups were assumed to be normally distributed, using the standardized mean

difference, defined in Equation (2.4], as the effect size index.

For each meta-analysis, 8 and x were defined as (kx1) vectors containing

parameter effects and moderator values, respectively. The predictor x was generated
from a standard normal distribution. Cn the other hand, the 8 valueswere obtained from

the expression 8= 5 + £ x+u, where £ was set to 0.5 to reflect an effect of medium
size according to the guidelines provided by Cohen (1988) for Social Sciences, the slope £
was set as described below, and u is an error term with distribution N{{, 'EE&,}. MNote that,

if the predictor is dropped from the model, then the error term u will have distribution

N0, 73y

The total heterogeneity variance, ¢°, and the model predictive power, P*, were
manipulated in the simulations. The former was set to values representative of no, low,
medium, or large amounts of heterogeneity in Psychology and related fields (0, .08, .16,

and .22, respectively). Regarding P?, values of 0%, 25%, 50%, or 75% of heterogeneity
accounted for the predictor were chosen, with the aim to reflect realistic conditions

{Thompson & Higgins, 2002). After setting both parameter values, a value was then
assigned to 5, by means of the expression $° =7°P’. Table 4.2 reports the different

values considered for these parameters, as well as the resulting values for 5° and the
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residual heterogeneity variance parameter, 7 which were computed with

reg d

gt =gt _38|2-5

reg

Tahle 4.3 Parameter values considered in this simulation for 7°, P?, 5, and fis
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Other factors manipulated in this simulation were the number of studies in each
meta-analysis (¥ = 5, 10, 20, 40, and 20} and the average sample size of the & studies
(N = 30, 50, and 100). Note that, for the ith study, N.=n.+n,, assuming equal group
sizes. Vectors of individual sample sizes were generated with an asymmetry of +1.546, as
reported by Sanchez-Meca and Marin-Martinez (1998a, p. 217) from a review of meta-
analytic syntheses in Psychology. A total of 13x5x 3 =195 conditions were examined. For

each condition, 10,000 meta-analyses were simulated, and %%, %

regd

2
and E° were

computed for each simulated database with the seven alternatives presented in Section

3.2 of this dissertation: HE, HS, DL, 51, ML REML, and EEmethods.

2

Ferformance for all estimators of 72, 7., and P® was compared using several

criteria. Let éf he an estimate obtained with any of the proposed methodsin a particular

condition. The hias for that condition was computed with {Marin-Martinez & Zanchez-

Meca, 2010)

® From € =5 X, +u,, the total amount of heterogeneity in the true effect sizes, %, can easlly be
computed with 2 = BV (X y+1), = A7 +¢l ,as X, and u, are independent and normally distributed

with mean zero and variances 1 and f:n, respectively. This leads to the expression rfn =z ,{i’f.
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S é!
BIAsl )=, (4.1)
10,000

where & is the value of the parameter of interest {see Tahle 4.2). The percentage of hias

was then ohtained with

% BIAS(0 )= %wxmﬂ, @2
Moreover, the MSE vvas calculated with
>ler-of
MSE§ )= (4.3)

10,000

Finally, as described in Section 3.4 of this dissertation, the computation of the R*

. . . . a 1 -
value may require truncation in various cases. When 7° and ¢, are both actually positive

{in which case 0< P* <1}, alarge rate of truncated R*® values would reflect undesirable

performance of Equation (2.24). Therefore, the proportion of R* values truncated to 0 or

1 was also examined for the different estimators along the simulated scenarios.

4.4 Results
4.4.1. Total heterogeneity variance

Because any negative estimates of 7° were truncated to zero, all estimators
showed the expected positive bias under the homogeneous scenario (> =0). On the
other hand, for the conditionswith 7° > 0, Table 4.4 shows the percentage of hias for the
total heterogeneity wariance estimates provided by each method when setting the
number of studies and the average within-study sample size to values that can often he

found in meta-analyticreviews (e.g., ¥ =20 and N =50 1
11



Tahle 4.4 Percentage of hias for the total heterogeneity variance estimators

with £ =20 and N =50

e HE HS DL B WL REML | EB

0.08 2.81 -17.33 | -6.23 | 45.19% | -17.92 | 6.9 | -1.82

016 1.05 -16.03 | -7.49 |16.96 | -14.27 | -6.01 | -2.30

0.32 A7 -16.83 | -9.83 4.69 | -11.93 | -5.25 | -2.36

The HS and ML estimators provided the most negatively biased estimates, with a
deviation of around 16% from the parameter value. The SJ estimator showed the most
{positively) hiased results, although its performance improved as ¢° increased. The DL
and REML estimators performed similarly for small to medium amounts of heterogeneity,
with a negative hias slishtly over 5% while the DL estimator yielded more hiased results
for large values of 7. The HE estimator showed the hest results in terms of hias, with a
positive deviation smaller than 2% and better results as the parameter value increased.
Finally, the EB estimator performed reasonably well in terms of bias, with a negative
deviation from the parameter value around 2%. Results with smaller values of & showed
larger hiases for all of the estimators under comparison. Conversely, the estimates
ohtained with 40 and B0 studies were more accurate than for & =20 for the different
methods. Finally, higher average sample sizes also led to more accurate results for all

estimators.

Figure 4.1 presents the MSE values for the different estimators of 7° as a function
of the number of studies and the average sample size. When comparing the estimators in
terms of their relative efficiency, the 5J and HE methods provided the largest MSE values,
while the H% and ML estimators showed the most efficient performance. The remaining
estimators (DL, REML, and EE} performed similarly as & increased. All methods vielded

more accurate estimates with a larger number of studies, as shown in Figure 4.1A, with
81



MSE wvalues clearly decreasing with 20 or more studies. Moreowver, an increase on the

average sample size per study also led to better results, asitcan be seen in Figure 4.1E

Figure 4.1 Mean Squared Errors for the total heterogeneity variance estimators
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4.4.2 Residual heterogeneity variance

Table 4.5 shows the percentage of hias for the various residual heterogeneity

variance estimators, using again conditions with some heterogeneity among the true

effects once a predictor is included in the regression model ('rif 0.02, 0.04,..., and 0.32),
and setting the remaining factors to values that can bhe regarded as representative for

meta-analyses in Psychology and related fields (e.g., & =20 and N =350).
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Tahle 4.5 Fercentage of hias for the residual heterogeneity variance estimators

with £ =20 and N =50

TE.-:& HE HE DL sl ML REML EB

0.02 42,40 | -20.5% | 21.39 | 287.04 | -25.75 | 16.35 28.85
0.04 1412 | -27.93 1.55 140.93 | -30.5% | -1.06 b.68
0.06 4.41 -29.75 | -5.40 70.96 | -31.28 | -0.8O -97
0.08 3.22 -27.45 | -5.70 63.67 | -28.04 | -6.35 -1.33
.12 2.26 -24.87 | -6.23 32.83 | -24.060 | -5.58 -1.47
0.16 -12 -24.71 -8.02 23.03 | -23.08 | -6.72 -3.28
0.24 B4 -22.97 | -B.17 13.66 | -12.54 | -5.0% -2.07
0.32 A1 -23.46 | -9.74 4.44 -18.82 | -5.29 -2.55

Trends for the different methods when estimating the residual heterogeneity
variance were very similar to the ones detailed for ¢°. Regarding bias, the SJ estimator
showed again the most biased results — the positive bias was now larger than for 7° —
unless the parameter value vas large enough {'EE&, ={.24 and 'z:";_? ={.32 ). Moreover, HS
and ML methods provided again negatively biased estimates, with a deviation from the

parameter value around 25% with 20 studies, larger than the one ohserved for ¢°. Finally,

HE, DL, REML, and EE estimators performed similarly than for 2.

Figure 4.2 shows the MSE results for the estimators as a function of the number of
studies and the average sample size of the studies. The HS and ML methods performed
very similarly, so their results are presented jointly, same as for the REML and EB
estimators. As found in the results for 7%, the number of studies showed the largest
influence on the efficiency of all estimators of 'Ff” and the MSE values especially
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decreased when going from 5 to 10 and from 10 to 20 studies. The average sample size
also showed some influence on the efficiency of the estimates, with smaller MSE values

ohtained as N increased. The SJ and HE estimators showed the largest MSE values, while

the HS and ML methods provided the most efficient estimates. All estimators except the

Sl method performed similarly with & =30.

Figure 4.2 Mean Squared Errors for the residual heterogeneity variance estimators
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4.4.3 Model predictive power

The E? values ohtained with all estimators were quite variable, hut the estimates
tended to fall doser to the parameter value as &, ﬁ, %, and P? increased. As an
illustration, Table 4.6 presents the correlations hetween the estimates obtained with the
different methods under two opposite scenarios. The lower part of this table (below the

main diagonal) presents the correlations under adverse conditions (k =5, N =50,
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7 =0.16, and P* =0.25), while the upper part provides the correlations obtained under

an optimal scenario (kK =80, N =100, ¢* =0.32, and P* =0.50).

Table 4.6 Correlations hetween the B* values obtained with the different methods

HE HS CL =l ML REML EE

HE 9727 5731 9934 9958 9860 .5991
H& L7070 .549499 9692 9869 G855 L5803
CL 9368 G201 G701 G871 SERE 9807
sl JB227 5720 L8156 8907 .5815 .59935
ML FB27 L2385 FEF7 5843 .59999 5988

REML 5322 .67596 .8516 2221 7591 .9989
EE 8678 6851 8772 H314 JILS 8626

Under adverse conditions, the highest correlations were found between the DL,
REML, and EB estimators, with values over .95, while most of the remaining combinations
vielded values below .90 and even below .60 {e.g., the correlation between the HS and =J
estimators). Conversely, all estimators performed wvery similarly under the optimal
scenario, with all correlations falling above .96, Table 4.6 shows, therefore, that the
differences between estimators are especially important under the most adverse
conditions, while the performance for all methods tends to convergence for the optimal

scenanos.

Out of the different factors manipulated in this simulation, the accuracy of the P*
estimates was mostly influenced by the number of studies. The influence exerted by &, as
well as by other factors, on the accuracy of the P® estimates is illustrated in Figure 4.3
using the EB estimator, which provided slichtly more accurate results than the other
methods under comparison, and considering scenarios where the model predictive power

to he estimated was P* =0.25.
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Figure 4.2 E° values using the EB estimator with P* =0.25
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The boxplots presented in Figure 4.2 show a very large variability in the P?
estimates, especially for small values of . The picture is worrisome for a typical meta-
regression, as it reveals that any E* wvalue {including a truncated estimate} can bhe
obtained unless the number of studies is large enough {40 or more studies). Results with 5
studies, which are not shown in this figure, were very unstable. Apart from the notable
influence of &, an increase in the average sample size per study led to more precise
estimates, while increasing the heterogeneity variance parameter led to a smaller rate of

truncations.

several descriptives were computed for the R® values obtained with the different

estimators, considering conditions with 40 studies and setting the other factors to realistic

values for a meta-regression with a single covariate (e.g., N =50, ¢*=0.16, and

Bo



P? =0.25). Table 4.7 presents the mean, the median, the 2.5 and 97.5 percentiles, and

the rates of values truncated to zero and to one for each estimation method.

Table 4.7 R* valueswith ¥ =40, ﬁ=5{l, ¢ =0.16 and P* =0.25

Estimator HE HS DL s) ML REML EB
Mean 2524 | 2950 | 2488 | 1464 | 2052 | 2588 | 2555

P, 0 0157 0 0 0166 0 0
Median 2311 | 2752 | 2281 | 332 | 2843 | 2390 [ 23,
P 6512 | 6974 | 6458 | 23734 | .7379 | 6781 | 6547
plrR?=0) | .0s85 | w0003 | 0689 | 0570 | .ooe2 | 0630 | L0565
plr2=1) | .0021 | 0029 | 0017 0 0011 0010 | L0015

Regarding the comparison of the different estimators in terms of hias, the HE, DL,
REML, and EB estimators performed appropriately, with their mean estimates deviating
less than .01 from the parameter value { P> = 0.25). In contrast, the HS and ML estimators
showed a positive hias, while the mean estimate for the %l estimator showed a large
negative hias. Despite the negative hias for HS and ML estimators and the positive hias for

the S estimator when estimating ¢° (see Section 4.4.1), those deviations were larger

2
reg f

when estimating 77, as it was also detailed before. Consequently, the trends for these

three methods were reversed for the estimation of P2,

In addition to the hias that was found for the HS, ML, and 5 estimators, the
remaining methods showed some problems as well. When examining the percentiles
presented in Tahle 4.7, it can be seen that there was awide variation among the individual
estimates, and that 95% of the central values ranged from 0 to 0.74. Moreowver, a non-
negligible proportion of the estimates {over 5%) were truncated to zero, especially for the
CL and REML estimators. While the truncation rates to zero were clearly lower for the HS

and ML estimators, the hias showed by these two methods advises against their use.
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Finally, despite the parameter value of P* =0.25, the HE, DL, REML, and EB methods still
provided some estimates that were truncated to one. On the other hand, since the SJ

- - - 2 2 2
estimator always vields a non-negative value for 77 or ¢_,, E° can never reach 1 when

reg d
using this estimator” and hence never required truncation at the upper end of the scale,

although in turn it provided the largest hias.

Table 4.2 presents the MSE results with 40 studies and P> =0.25 for the different

estimators. Only conditions with some heterogeneity among the parameter effects

[fz e {]} were considered here.

Tabhle 4.2 MSE values for the P? estimators with ¥ = 40 and P* =0.25

Estimator HE H5 CL =l ML REML EE

2008 |.0959 |.1271 |.1036 |.0290 |.1498 |.1195 |.1078

|
I

30 | s2_p16 |.0711 |.0®15 |.0682 |.0311 |.0972 |.0777 |.0671

+2-032 |.0359 |.0402 |.0375 |.0229 |.04782 |.0409 |.0346

2 =00 |.0637 |.0770 |.0636 |.0282 |.0871 |.0695 |.0642

N=30 [:_p1g |.0218 |.0346 |.0322 |.0218 |.0379 |.0340 |.0313

+2-0p32 |.0223 |.0225 |.0232 |.0177 |.0229 |.0228 |.0223

2008 |.0287 |.0299 |.0284 |.0205 |.0208 |.0289 |.0285

N =100 2 _p1g |.0202 | .0198 | .0202 |.016% |.0202 |.0205 | .0203

+2_p32 |.0174 |.0163 |.0174 |.0151 |.0170 |.0175 |.0175

" The S estimater will enly provide a value of zero (for both £? and #2 }inthe unlikely event that the

reg

effect sizes are homogeneous, as it can be readily seen from Equations {3.9) and {3.10)
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All methods performed more efficiently as the average sample size and the total
heterogeneity variance increased. When comparing the different methods, the ML and HS
estimators provided the largest MSE values, while the S1 estimator vwas the most efficient
method, especially under the most adverse conditions. Regarding the influence of the
number of studies, weak performance was reported before for the method proposed by
Raudenbush (1994} with a small number of studies (see Figure 4.2 and Tabhle 4.7]). With
k=20, trends were already similar to the ones shown in Tahle 4.8, although the MSE
values were twice as large as for & = 40. With 20 studies, the MSEs were on average
smaller than .04 under all of the conditions examined here, although trends for the

different estimators remained the same.

4.5 Discussion

In this study, the performance of sewven methods for the estimation of the total
and residual heterogeneity variances, as well as the model predictive power, was assessed
under a variety of realistic scenarios in applied research. The estimators here compared
performed differently, especially under adwverse and intermediate conditions, while all
methods provided similar and accurate estimates of the parameters of interest for the
most favorable conditions (e.g., large number of studies and large number of participants

per study).

Regarding the results for the total heterogeneity variance, the patterns found in
this simulation are comparable to the ones reported by Viechthauer {2005). The DL REML,
and EB estimators performed reasonably well in terms of bias and efficiency, although the
CL method yielded negatively biased estimates for large parameter values, as found in
previous simulations {Malzahn et al., 2000; Sidik & Jonkman, 2005h, 2007; Viechthauer,
2005). The HE estimator showed essentially unbiased results (the positive hias observed in

Tabhle 4.4 and Table 4.5 can he regarded as a consequence of truncating the negative
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estimates to zero) but large MSE values, while the HS and ML methods performed wvery
efficiently but with a negative hias. Finally, the Sl method showed a large positive hias for
small parameter values, as it has been previously described (Sidik & Jonkman, 2005h], and
the largest MSE values. The performance of the various estimators remained very similar

after the inclusion of a moderator.

Regarding the estimation of the predictive power in meta-regression models with
one predictor, no estimator performed accurately with less than 40 studies. Again, the HS,
ML and %) estimators vielded the most hiased estimates. The remaining estimators
performed more precisely, althousgh their estimates still showed wide variation even with
a moderate to large number of studies, including truncated values to zero and one, as

shown in Table 4.7. Given the large MSE of the %l estimator for 7* and ff&, the =J

estimator showed surprisingly efficient performance for estimating P?, while the HS and

ML methods now provided the largest MSE values.

Out of the different factors manipulated in this simulation, results from this
simulation suggest that the number of studies exerts an important influence on the
accuracy of the results, and that precise estimates of the heterogeneity variances and the
model predictive power can only be expected with at least 20 and 40 studies, respectively.
An increase in the average sample size also improved the results for all estimators. The
critical influence of & on the accuracy of the heterogeneity wvariance estimators has
already been discussed by several authors hoth in the context of rand om-effects models
{e.e., Borenstein et al., 2009; Schulze, 2004} and mixed-effects models {Thompson &
Higgins, 2002). The fact that results were more accurate as & and N increased is in
agreement with large-sample theory, which underlies the statistical models and methods
in meta-analysis {Hedges, 2009). Moreover, as shown in Figure 4.2 and Table 4.8 the
estimators of the model predictive power performed more efficiently as the total

heterogeneity variance increased. An explanation of this fact is that, when estimating ¢?,
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a small parameter value will lead more often to negative estimates requiring truncation,

and this will also lead to truncated R* values.

In summary, the results obtained in this simulation study suggest that about 40
studies are required to get accurate estimates of P* in mixed-effects meta-regression
models, so that a cautious interpretation of R® values should be advised for meta-
regression models fitted with a smaller number of studies (Thompson, 1994). Qut of the
different estimators here compared, the REML, DL and EB methods showed the most
accurate results across the different scenarios and criteria here considered. Although the
present study focused on standardized mean differences, itis likely that these findings can
he generalized to meta-analyses with other effect size measures that are (at least
approximately]l normally distributed. However, conclusions from this simulation are
restricted to the scenarios considered here, so that further simulation studies are needed

in order to account for conditions different to the ones included in the present study.
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Chapter 5

A comparison of procedures to test for
moderators in mixed-effects

meta-regression models

5.1 Objectives, previous simulation studies, and hypotheses

5.1.1 Objectives of the study

As shown in Chapter 3 of this dissertation, different methods have heen proposed
in the meta-analytic literature both for estimating the amount of residual heterogeneity
variance and for testing the coefficients in mixed-effects meta-regression models, and the
choice of the statistical method can affect the results and statistical conclusions. In this

study, several methods for mixed-effects meta-regression models were compared through
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Monte Carlo simulation under some realistic scenarios in psychological research. Various

methods were implemented for:

®  The estimation of the residual heterogeneity variance: seven estimators, already
presented in Section 2.2 of this dissertation, were employed: Hedges (HE], Hunter-
Schmidt (HS), DerSimonian-Laird (DL, Sidik-lonkman (%)), maximum likelihood

{ML), restricted maximum likelihood {REML), and empirical Bayes (EE) estimators.

» The statistical testing of the regression model coefficients: the standard method,
Knapp-Hartung method, Huber-White method, likelihood ratic test, and
permutation test were included. All of these methods were described in Section
2.2 of this dissertation. The Knapp-Hartung method was implemented bhoth with
and without the truncation proposed by the authors {Knapp & Hartung, 2003),

leading to six different methods.

Methods from both categories were comhbined to generate different
methodological alternatives available to meta-analysts when testing the statistical
signhificance of one or more moderators in mixed-effects meta-regression models. There
are some restrictions, howewver. Firstly, the likelihood ratio test was only implemented
together with the ML estimator, since it is not theoretically appropriate to comhbine it with
the remaining estimators. And secondly, the computation of the permutation test is not
efficient when applying some iterative estimator, due to the fact that only one missing
value along the whole set of permutations {e.g., one model for which convergence is not
achieved in the estimation of the heterogeneity variance) ruins the entire process. For this
reason, the permutation test was only combined with HE, H5, DL, and 51 estimators. In
total, 22 combinations of procedures to test the statistical significance of the slopein a
meta-regression model with a moderator, were compared for the present simulation in
terms of empirical Type | error and statistical power rates, using standardized mean

differences as the effect size index.
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5.1.2 Previous simulation studies

Some previous simulation studies compared the performance of different methads
to test for moderators in mixed-effects meta-regression medels. Knapp and Hartung {2003)
comhbined their method and the standard method with DL, {approximate] REML, and EB
estimators. These authors found, using log risk ratios as the effect size index, hetter
results for the Knapp-Hartung method compared to the standard one in terms of
adjustment to the nominal significance level, irrespective of the residual heterogeneity
variance estimator. Later, Sidik and Jonkman {2005a) compared the standard, Knapp-
Hartung, and Huber-\White tests using the DL estimator, also with log risk ratios as the
effect size measure. Their results again showed a better performance for the Knapp-
Hartung method in terms of adjustment to the nominal significance level. Nevertheless,
no study has analyzed yet the consequences of truncating the Knapp-Hartung method, as

recommended by the authors (Knapp & Hartung, 2002).

More recently, Huizenga and colleagues {2011} compared different methods in
terms of empirical Type | error and statistical power rates, using standardized mean
differences as the effect size index, as it was done for the present study. These authors
included the likelihood ratio test, and found a slightly better control of the Type | error
rate for this method compared to the standard one. They also examined a resampling
method based on permutations of the residuals, and found promising results for that
procedure. However, that resampling test is somewhat different to the permutation test
considered in this study, and the performance for the latter has not been systematically

evaluated yet.

5.1.3 Hypotheses of this study

According to the hypotheses of this study, it was expected that:
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1} Differences among the methodological alternatives would not he due to the
residual heterogeneity variance estimator, but rather to the method for testing the

regression model coefficients, as found by Knapp and Hartung {2003).

2) The standard, Huber-White, and likelihood ratio tests for the coefficients would
not control adequately the Type | error rate, as suggested by several authors (e.g.,
Huizenga et al., 2011; Knapp & Hartung, 2003; Sidik & lonkman, 2005a; Thompson
& Higgins, 2002).

3} The Knapp-Hartung method would provide an adeguate control of the Type | error
rate, as found in previous studies using different effect size measures (Knapp &

Hartung, 20032; Sidik & lonkman, 2005a].

4] The truncation proposed by Knapp and Hartung (2003) would lead to a loss of

statistical power compared with the original Knapp-Hartung method.

5) The permutation test would perform appropriately in terms of empirical Type |

error rates for every simulated condition.

5.2 An illustrative example

The set of methodological alternatives to test the influence of moderators in
mixed-effects meta-regression models were applied to an example for illustrative
purposes. Tahle 5.1 shows the results of 12 studies about the effect of psychological
therapy on depressive symptoms for patients with ohsessive-compulsive disorder, with
the effect size index being the standardized mean difference, 4., and &j{ the within-study

variance for each 4 value. Data were taken from the meta-analysis conducted by Rosa-

Alcazar and colleagues (2008). Most of the 4. indices were positive, indicating a higher
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henefit for the treatment group compared to the control group at the posttest.
Nevertheless, large variahility vwas found from one study to another in the magnitude of
the effect size estimate. In order to account for part of the heterogeneity among the
effect size estimates, mixed-effects meta-regression models were fitted using the

percentage of males in the clinical sample of each study as the covariate, r., for the

analyses,

Table 5.1 Example data from the meta-analysis of Rosa-Alcazar et al. (2008])

Study d. &:; X,

Fals-Stewvart, Marks, and Schafer {(1992) .a51 0721 45.3
Fineberg, Hushes, Gale, and Roberts (2005) 756 1428 24.2
Freeston et al. (1997) -057 1834 55.0
Greist et al. (2002} 275 0328 58.0
Jones and Menzies (1998) 804 2063 9.5
Lindsay, Crino, and Andrews (1997) 5RO 2316 2332
Lowell, Marks, Noshirvani, and &' Sullivan (1994) - 105 .3338 41.7
Marks, Stern, Cobb, and McDonald {1920} -.059 2009 20.0
Makatani et al. {2005} -275 2271 23.2
&' Connor, Todorov, Robillard, Borgeat, and Brault {1599) 1.250 .2456 20.0
Van Balkom et al. (1998) 01 A153 271
Vogel, Stiles, and Gotesman (2004) 2.140 ABE7 16.0
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The influence of the covariate was statistically tested using all possible
comhbinations of residual heterogeneity wvariance estimators and statistical tests for the
regression model coefficients (see Section 5.1.1 of this dissertation). P-values obtained in

the corresponding analyses are shown in Table 5.2.

Table 5.2 Results ohtained with the data example from the meta-analysis of Rosa-Alcazar

et al. (2008])
Method HE H& ] =1 ML | REML ]| EE
Standard JA15 | 05e | 072 ] L1215 | 057 | 076 | .096
Knapp-Hartung A20 | A5 | 140 | 120 ) A55 | A2F | 127

Truncated Knapp-Hartung Jd46 | 56 | 140 | 146 | A55 | A3T7 | 127

Huber-White Jd42 | 141 | 144 ) 148 | 141 | 145 | 146
Likelihood ratio test - - - - 063 - -
Fermutation test L84 | 092 | 134 | 080D - - -

Although none of the analyses found a statistically significant relationship, some
discrepancies among the p-values can be observed. The likelihood ratio test provided
marginally significant results, as well as some applications of the standard and
permutation tests. On the other hand, p-values were always greater than .10 when
implementing the Knapp-Hartung and Huber-White methods, with generally higher values
obtained with the latter. The example results do not suggest a clear influence of the
variance estimator on the statistical conclusion, but rather of the statistical test for the

moderator.
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5.3 Simulation Study

In order to compare the performance of these methods, a Monte Carlo simulation
study was conducted. Meta-analyses with & studies were generated, with each study
hased on a two-group design, comparing subjects in an experimental (E) and a control {C)

group with respect to some continuous dependent variable. The scores of the nf and nf

subjects in the respective groups were assumed to bhe normally distributed, using
standardized mean differences as the effect size measure (further details of this index can
he found in Chapter 2 of this dissertation]. For the simulation study, it was assumed thata

single moderator influences the size of the true effect for the ith study, & , such that
8=5+p5x +u,. {5.1)

For each iteration of the simulation, the values of the moderator, x,, were

randomly generated from a standard normal distribution, and the random errors u, were

also generated with distribution N(0,72 ). Three different values for ffﬁ were

rEg
considered, namely 0, 0.08 and 0.22, corresponding to the absence, a medium amount,
and a large amount of residual heterogeneity in the true effects. Without loss of

generality, £, was set equal to zero. For the slope, 5, three conditions were examined,

namely & =0, £ =02, and £ =0.5, the first yielding information on the empirical

Type | error rate of the various tests, and the latter providing information aboutthe power

of the tests when the null hypothesis is in fact false.”

? Mote that for each combination of the three 7> values and the three 5, values, the model predictive

reg
power could easily be computed with the expression P* = 87 /(A% + 12 ) (see Section 4.3 of this
dissertation). Specifically, for a slope parameter of ﬁl =0.2, values of 'IL equal te 0, .08, and .32

correspond te PP =1, P? =.33, and P? =.| 1, respectively, if the model predictive power is computed

with the foermula proposed by Raudenbush 1994}, Considering now the conditions with ,{?1 ={.5, the
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Five different values were considered for &, namely 5 10, 20, 40, and 20,
corresponding to a small to large number of studies for the meta-analysis. After simulating

k & values based on Equation (5.1), the corresponding observed effect size estimates
were then generated with g, =27 ‘me where Z. ~ N(&,1/n° +1/n"y, X ~ Xii,
and m, =n|.5 +n|.f — 2. Then, unbhiased parameter estimates, d,, were computed hy
correcting g, with Equation {2.4), already presented in Chapter 2 of this manuscript. The
corresponding sampling variances, u:’i'i_J were then computed using Equation (2.5), also

presented in Chapter 2.

Sample sizes of the individual studies were also manipulated, assuming

i, =n|.‘5 = nl.f and setting #, either equal to (5, 8, 9,10, 42), (15, 18, 19, 20, 52}, or {41, 43,
44, 45, 77), corresponding to average sample sizes of 20, 50, and 100 subjects for the
studies {individual sample sizes were chosen hased on a review of published meta-
analyses where a skewness value of +1.546 was found to be realistic for sample size
distributions; for more details, see Sanchez-Meca & Marin-Martinez, 1998a). For the

k=10, k=20, k=40, and k¥ =30 conditions, the sample size vectors were repeated 2,

4, 8, and 16 times, respectively.

Thus, a total of 5{ k) =3 {sn) =« 3(f) =3 (2 ) = 135 conditions were examined.

reg
For each of these conditions, 10,000 meta-analyses were simulated. After generating the
data within a particular iteration of a particular condition, the meta-regression model was
fitted using the various heterogeneity estimators and then the model coefficient Bl was

tested for statistical signhificance with the various procedures described earlier, using

corresponding values for the model predictive power, setting 'z'is again to 0, .08, and 32, will now bhe

F? =1, P* = 76, and P? = 44 . This illustrates how the increase in Tf'ﬁ will generally lead to a decrease in

the power of the statistical tests.
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¢ =.05 as the nominal significance level. For £ =35, an exact permutation test was
carried out. For larger values of &, obtaining the exact permutation-hased p-values was
not feasihle, so that a total of 5,000 random permutations were used for the test. The
rejection rates of the wvarious procedures were recorded for each condition. The
simulation was conducted with R, using the metafor package to fit the meta-regression

model (Viechthauer, 2010).

5.4 Results

In this section, the performance of the different methods is compared using 3x3
graph figures. Since no trend differences were found depending on the residual variance
estimator used, only the results for the DL, ML and EB estimators are presented here. This
section is divided into two parts, corresponding to the empirical Type | error rate and the

statistical power of the tests, respectively.

5.4.1 Empirical Type [ error rate

Setting 5, =0 allowed for comparing the methods in terms of their empirical Type
| error rates. Note that by setting & =.05, values around .05 indicate that the Type | error
rate is adequately controlled. Figure 5.1 presents the empirical Type | error rates for the
different methods using the DL estimator. Since values for the Knapp-Hartung method and
the permutation test were essentially indistinguishable, results for both tests were

averaged.
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Figure 5.1 Empirical Type | Error Rates of the methods when using the DL estimator
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Results were very different depending on the method used to test the moderator.
EBoth the Knapp-Hartung and permutation tests performed close to the nominal level
regardless of the simulated scenario. In contrast, the truncated Knapp-Hartung method
provided overly conservative results for most conditions, especially when the number of
studies was small and when there was no residual heterogeneity among the true effects.

On the other hand, the standard and Huber-White methods showed empirical rejection
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rates clearly over the nominal significance level. The number of studies showed a similar
influence on hoth methods, with a small number of studies corresponding to a higher
proportion of incorrect rejections of the null hypothesis, especially for the Huber-White
test. Finally, a larger amount of residual heterogeneity across the effect sizesalso led to a

greater amount of incorrect rejections for the standard method. For instance, with 40

studies, the standard method provided rejection rates around 0.04 with ff&, ={, while

rates for this method were over 0.06 when ffﬂ ={.32.

Figure 5.2 presents the empirical Type | error rates for the different statistical tests
when using the ML estimator. Rejection rates for the Huber-White method, which
performed similarly than when combined with the DL estimator, were not included in this
set of charts. Note that the performance of the permutation test is not analyzed here
hecause, as stated before, this method is computationally overly demanding when

combined with iterative estimators of 7°_ .

The general trends in the performance of the methods were wvery similar when
using the DL and the ML estimator. The Knapp-Hartung method performed almost
nominally irrespective of the simulated scenario. The standard method showed rejection
rates clearly over 0.05, especially with a small number of studies and a large amount of
residual heterogeneity among the true effects. Similar results were obtained with the
likelihood ratio test, which showed rates slishtly smaller than the ones obhserved for the
standard method on average and adequate control of the empirical Type | error rate for
meta-analyses with 40 or more studies. Finally, the rejection rate of the truncated Knapp-
Hartung method fell below the nominal significance level, getting closer to .05 as the

number of studies and the amount of residual heterogeneity increased.
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Figure 5.2 Empirical Type | Error Rates of the methods when using the ML estimator
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Similar trends to the ones described above were observed when using the EB
estimator, whose results are shown in Figure 5.32. Again, because of the iterative
computations required for the EE method, the permutation test was not combined with

this estimator.
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Figure 5.2 Empirical Type | Error Rates of the methods when using the EB estimator
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5.4.2 Statistical power rate

Statistical power reflects the probability for a method to properly reject the null

hypothesis of an absence of statistical assocdiation between the covariate and the effect
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sizes when there is a true relationship (e.g., when £ = 0). Generally, power rates equal to

or greater than 0.8 are considered as satisfactory in Psychology (Cohen, 1988). In order to

assess the statistical power rates of the different procedures for testing the significance of

regression coefficients, conditions with £, =0.2 are presented here.

Figure 5.4 Statistical Fower Rates of the methods when using the DL estimator
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Figure 5.4 presents the power results of the methods when using the DL estimator.
Again, Knapp-Hartung and permutation tests showed wery similar results, so that values

for hoth methods were averaged and are presented jointly.

When combined with the DL estimator, the standard and Huber-White methods
systematically showed the highest rejection rates on average, while the truncated Knapp-
Hartung method provided the lowest rates. The influence of the different conditions
manipulated in the simulation was similar for all of the methods. As expected, the numhber
of studies showed a strong positive relationship with the statistical power. Note, howewver,
that at least 40 studies were required for the different methods to provide average power
rates close to the desired value of (0.8, Furthermore, the overall power rates were sightly

greater as the average sample size per study increased. Finally, the amount of residual

heterogeneity showed a negative relationship with the power, with larger residual fi_,,

values corresponding to smaller rejection rates.

The statistical power rates for the methods when using the ML estimator are
presented in Figure 5.5, Again, results for the Huber-White method were not included,
since the trends for this method were similar to the ones already described in

combination with the DL estimator.

Figure 5.5 shows that the highest power rates were obtained with the standard
and likelihood ratio tests, while the truncated Knapp-Hartung method vyielded again the
lowest rejection rates of the null hypothesis. Similar to the DL estimator, all methods
combined with the ML estimator showed higher power rates as the number of studies
increased, with the average sample size per study exerting a slight positive influence on
the rejection rates. Also, as shown in Figure 5.5C, power for all methods decreased as the
amount of residual heterogeneity among the true effects increased, with the rejection
rate of the truncated Knapp-Hartung method gradually converging to that of the

untruncated version of the test.
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Figure 5.5 Statistical Fower Rates of the methods when using the ML estimator
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Lastly, Figure 5.6 shows the power results for the different testing methods when
using the EB estimator. Results with this estimator did not provide any additional

information, hut showed the same trends described hefore for the four methods included.
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Figure 5.6 Statistical Fower Rates of the methods when using the EBE estimator
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Results for /5, =0.5 are not be presented here. With such alarge slope value, all

methods provided on average rejection rates over .20 with 20 or more studies. With
smaller values of &, trends for the different methods were very similar to the ones

described ahove for 8 =0.2.
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5.5 Discussion

Several different methods are available for analyzing the association between one
or more covariates and the effect size estimates under a mixed-effects model. In this
chapter, a variety of different methods in the context of mixed-effects meta-regression
models were compared. Specifically, seven residual heterogeneity variance estimators and
six methods for testing the significance of the regression coefficients were compared in a

Monte Carlo simulation study with stand ardized mean differences as the effect size index.

Two comparative criteria were considered for the assessment of the adequacy of
each method across conditions similar to those typically found in psychological research.
On the one hand, empirical Type | error rates were examined in order to assess which
method s adeguately control the rejection rate when a covariate is unrelated to the size of
the effects. On the other hand, statistical power rates were obhtained, with the aim to
check which methods are more sensitive for the detection of a real moderating
relationship. The results for the different procedures compared in this simulation were
not found to he affected by the residual heterogeneity estimator computed. Howewer,
some differences were ohserved depending on the method employed for testing the

regression coefficients.

Some authors have criticized that the standard method, applied in most meta-
analyses when the influence of a moderator is tested under a mixed-effects model, does
not take into account the uncertainty due to the variance estimation process, with the
subsequent risk of reaching statistically significant results that might be inappropriate
{e.g., Thompson & Higgins, 2002). When examining the empirical Type | error rates from
the present simulation study, results for the standard method were in fact not
satisfactory, with rates cearly over the nominal significance level in most situations,
especially when some residual heterogeneity was present in the true effects and the
number of studies was low. The liberal empirical Type | error rates showed by the

standard method are the cause of its slightly higher statistical power exhibited in
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comparison with the Knapp-Hartung and permutation tests. However, a test with deficient
control of the Type | error rate should be avoided for routine use. Therefore, these results
should encourage meta-analysts to consider alternative methods to the standard one,

particularly when the number of studies in a research synthesis is small.

Due to the problems related to the standard method, some authors have
developed wvarious alternatives for testing the regression coefficients. The most widely
employed one, up to date, is the Knapp-Hartung method, which incorporates a correction
factor to the standard formula to estimate the variance-covariance matrix of the
regression coefficients and whose statistical test is based on Student's t-distribution
instead of the normal distribution assumed for the standard method. When this test was
first proposed {Knapp & Hartung, 2003), the authors suggested truncating the correction
factor to one if a smaller variance than that of the standard method was obtained. With
this practice, the variance estimates of the regression coefficients would always he equal
to or greater than the ones obtained with the standard method, so that the confidence
intervals obtained with the Knapp-Hartung method would never be narrower than the

standard ones

The untruncated Knapp-Hartung method provided an adequate control of the Type
| error rate, while truncating this method led to overly conservative results, as seen in
Figures 5.1 to 5.2. Moreover, when comparing the methods in terms of their power in this
simulation study, Figures 5.4 to 5.6 showed that the truncated Knapp-Hartung method
provided systematically smaller rejection rates than all of the remaining methods under
assessment. Therefore, results of the present study suggest hetter performance of the
Knapp-Hartung method without the truncation ofits correction factor. This is of particular
concern, given that some software macros for meta-analysis (e.g., those that can be found
in Stata) have implemented the Knapp-Hartung method only in combination with the

truncation.
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The trends described in the last paragraph for both versions of the Knapp-Hartung
method, illustrated in Fgures 5.1 to 5.6 for the DL ML and EB estimators, were also

ohserved with the latter, despite the fact that the correction factor ¢ is then always equal

2

to one for positive values of 7,

as pointed out before. These results therefore suggest

that the truncation proposed by Knapp and Hartung {20032} will make a difference
especially in situations where the residual heterogeneity estimate is likely to require

truncation as well (Borenstein et al., 2009),

The performance of the Huber-White and likelihood ratio tests was also assesseid
in the present study. As found in previous Monte Carlo simulations {Huizenga et al., 2011;
Sidik & Jonkman, 2005], the results of the current simulation showed empirical Type |
error rates dearly ahove the nominal significance level for hoth tests, with the Huber-
White method providing higher proportions of incorrect rejections of the null hypothesis
than all of the remaining methods. This trend was more evident when the number of

studies was small.

Finally, the performance of a permutation test was also analyzed. This method
provided results very similar to those of the {untruncated) Knapp-Hartung method. Both
tests performed appropriately with respect to the empirical Type | error rates and their
power rates were usually larger than those obtained for the truncated Knapp-Hartung
method along the different simulated scenarios. The Knapp-Hartung method is, howewver,
simpler to compute than the permutation test (the latter reguires intensive computation],
so that it seems a reasonahle choice for most situations. Note, however, that the true
effects were simulated as if one selects a random sample of studies from a
superpopulation of studies {with normally distributed true effects). This corresponds to
the usual conceptualization of the random/mixed-effects model in meta-analysis (Hedges
& Vevea, 1998) and therefore also underlies the Knapp-Hartung method for testing the
regression coefficients. In that sense, the Knapp-Hartung method is a suitable option as

long as the set of studies can reasonably be assumed as a random sample from a broader
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population of studies. On the other hand, if no random sampling of studies can he

assumed, then the permutation test constitutes the most appropriate method (Manly,

1997).

The statistical power rates for all methods were clearly lower than .20 on average
with less than 40 studies when the slope parameter had a small to moderate value {e.g.,

£, =0.2 in this study). Moreover, all methods provided lower power rates as the residual

heterogeneity among effect size parameters increased. An explanation for this fact is that,

ceteris paribus, larger Tis values will lead to a decrease in the predictive power of a

model (see Section 2.4 of this dissertation).

In summary, the residual heterogeneity estimator did not show any influence on
the different combinations here considered for testing the influence of a moderator under
mixed-effects meta-regression models. Conversely, some discrepancies were found
depending on the method applied for testing the regression coefficients. Specifically, too
liberal results were ohtained with the standard method, the most widely employed up to
date in meta-analyses involving moderator analyses. Results of this simulation study
sugegest that, out of the different alternatives considered in the present study, the Knapp-
Hartung method is a suitable option for most situations due to its satisfactory
performance and computational simplicity. Overly conservative results were found for the
Knapp-Hartung method when applying the truncation suggested by Knapp and Hartung
{2003). Note that, as Figures 544, 5.5A and 5.6A reveal, all of the methods compared in
the present study required at least 40 studies to show power rates around 0.2 when the
influence of the moderator on the effect sizes was of small to medium magnitude
{5 =0.2). Therefore, in order to maximize the probability to detect real moderating
effects in a meta-analysis, the use of the Knapp-Hartung method without the truncation

seems to be the best option.
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The results of this simulation study are limited to the manipulated conditions.
Although the values for the parameters and factors were chosen to represent typical
conditions found in practice, additional simulation studies are needed including other
scenarios not considered here and using different effect size indices {e.g., odds ratios, risk

ratios, correlation coefficients).

The way moderators are tested in meta-analysis through mixed-effects meta-
regression models is receiving increasing attention in the literature, and several new
methods have recently been developed to conduct such analyses. Huizenga and
colleagues (2011) proposed the use of a Bartlett-corrected likelihood ratio test which
might improve the performance of the uncorrected likelihood ratio test regarding the
control of the Type | error rate. Guolo (2012} also recently proposed a new likelihood-
hased test for meta-regression models. Fnally, Friedrich and Knapp (2011, August)
presented a new method that seems to outperform the Knapp-Hartung method in terms
of coverage probability under adverse scenarios {small number of studies and very large
heterogeneity of the sample sizes and true effects among the individual studies). These
proposals were not considered for the present comparison of methods, although it should

he very interesting to evaluate their performance in future simulation studies.
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Chapter 6

Study 3: Alternatives for mixed-effects
meta-regression models
in the reliability generalization

meta-analytic approach

6.1 The reliability generalization {RG) meta-analytic approach

Reliahility is one of the most important psychometric properties to be considered
when choosing a test for its administration in a specific context. However, reliahility, as it
is defined and estimated from the Classical Test Theory, is not a stable property for a given
psychometric instrument, but rather a varying characteristic across different applications
of the test (Dawis, 1987; Gronlund & Linn, 1990; Nunnally & Bernstein, 1994; Pedhazur &

Schmelkin, 1991). Thus, in order to ohtain a reliahility estimate representative enough for
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future test users, as well as to determine if one or more factors from the sample
characteristics or the administration context have an influence on the reliability of test
scores, the best alternative is to guantitatively integrate the reliahility coefficients
computed with scores from different applications of the instrument under study. And,
when the aim is to carry out a quantitative synthesis, meta-analysis constitutes an optimal

methodological choice {Hedges & Clkin, 1985; Sanchez-Meca & Lopez-Fina, 2008).

Cespite previous meta-analytic studies integrating reliability coefficients can be
found in the literature {e.g., Churchill & Feter, 1984; Conway, lako, & Goodman, 1995;
Farker, 1983; Farker, Hanson, & Hunsley, 1982 Peter & Churchill, 19286; Salgado &
Moscoso, 1996; Yarnold & Mueser, 1989], the term refigbifity generalization (RG) was
firstly proposed by Vacha-Haase {1298). In an RG study, a set of reliahility estimates from
the same test are integrated, an overall reliahility estimate is obtained and heterogeneity
hetween the individual reliability coefficients is assessed {e.g., Lopez-Pina, Sanchez-Meca,
& Lopez-Lopez, 2012; Sanchez-Meca, Lopez-Lopez, & Lopez-Fina, in press). Moreover,
since some heterogeneity across estimates is usually found, a third obhjective in an RG
study consists of looking for moderator variables in order to explain part of that

variahility.

Although Vacha-Haase’s seminal paper was published just a few years ago, several
dozens of RG studies have already been conducted. A great variahility can he found
among these studies in terms of rigor, theoretical underpinning, and methodology. This is
partially due to the fact that the RG approach vas not conceived as monolithic in terms of
the statistical methods applied (Henson & Thompson, 2002; Vacha-Haase, 1998; Vacha-
Haase & Thompson, 2011). As a conseguence, there is no consensus about several

methodological issues affecting the statistical analyses.

One of these issues involves reliability coefficients transformation. Some authors
did not consider it necessary to transform the reliability coefficients for the statistical

analyses (e.g., Bonett, 2002, 2010; Henson & Thompson, 2002; Leach, Henson, Odom, &
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Cagle, 2006; Mason, Allam, & Brannick, 2007; Vacha-Haase, 1998). However, the sampling
distribution for the most usual reliahility coefficients (e.g., alpha coefficients and Fearson
correlations) is skewed, with a larger asymmetry level as the parameter approximates to
one (Rodriguez & Maeda, 2006}, as it is usually the case for reliability coefficients reported
in primary studies. Thus, some other authors recommended applying some
transformation on the reliability coefficients in order to normalize their distribution and to
stahilize their variances {e.g., Feldt & Charter, 2006; Rodriguez & Maeda, 2006). At least
three different transformation formulae — already presented in Chapter 2 — have heen

proposed and/or applied in the RG literature.

Another issue for which different solutions have heen applied so far in the RG
approach is the weighting scheme of the reliahility coefficients. Some authors just
employed OLS analyses in their R5 studies, that is, without weighting the reliahility
coefficients {e.g., Kieffer & Reese, 2002; Leach et al.,, 2006; Vacha-Haase, 1998).
MNonetheless, sample sizes in RG meta-analyses are usually unequal, leading to unequal
sampling variances for the reliabhility coefficients, so that the homoscedasticity assumption
— required for OLS technigues — is rarely met {Raudenbush, 1994; Rodriguez & Maeda,
2006). When weights were included in the analyses, some researchers chose the sample
size as the weighting factor (e.g., Victorson, Barocas, & Song, 2008; ¥in & Fan, 2000;
Zangaro & Soeken, 2005), according to the proposal of Hunter and Schmidt (2004}, while
some others chose the inverse variance of the reliability coefficients {e.g., Aguayo, Vargas,
de la Fuente, & lozano, 2011; Beretvas, Suizzo, Durham, & Yarnell, 2008; Lopez-Fina,
Sanchez-Meca, & Rosa-Alcazar, 2009). Inverse variances have been used as weights in
most of the meta-analyses published up to date {Borenstein et al., 2010}, and they are

also hecoming more and more frequent in the RS approach.

Wwhen the inverse variance is employed as the weighting scheme, it is necessary to
assume some statistical model (Sanchez-Meca, Lépez-Lépez, & Lépez-Fina, in press). In a

fixed-effect model, an estimate of the within-study variance is required for the analyses,
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and several formulae are available for raw reliahility coefficients as well as for the
different transformations proposed in the literature. This implies that, once the
transformation {or no transformation) of the reliahility coefficients is chosen, the
estimation method for the sampling variance is essentially unigue. As mentioned in
Chapter 1, the fixed-effect model allows for generalizing results only to the samples
whose reliability coefficients were incuded in the meta-analysis, and also to some
external situations where the administration conditions and sample characteristics were
identical to those of the studies included in the meta-analysis {Hedges & Vevea, 1998).
Like in other application fields of meta-analysis, simulation studies have warned ahout the
limitations of the fixed-effect model in the RS approach (Romano & Kromrey, 2003). The
varying coefficient model mostly circumvents those limitations (Bonett, 2010} but, as in
the fixed-effect model, concusions can only he extended to samples with identical

characteristics and composition to those included in the RG meta-analysis.

An alternative is to assume arandom-effects model, which is considered nowadays
as the most realistic option in the general meta-analytic arena {Cooper et al.,, 2009;
MNational Research Council, 1992) and in the RS approach {Rodriguez & Maeda, 2006]. The
main reasoh to assume a random-effects model is that, unlike the fixed-effect and the
varying coefficient models, it allows for generalizing results beyond the test
administrations included in the meta-analysis {(Borenstein et al., 2010; Hedges & Vevea,
1998). The random-effects model assumes that the integrated reliability coefficients are
estimating a random sample of parametric reliahility coefficients extracted from a higger
superpopulation. In practice, that implies estimating a second variance component, the
heterogeneity variance, and different procedures to accomplish this goal are available
{see Section 2.2). Since the aim in an RG meta-analysis is usually to generalize results
heyond the set of studies integrated, the weighting scheme throughout this study will be

that based on the inverse variance assuming a random-effects model.
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Moderator analyses constitute a crucial step in the RG approach (Rodriguez &
Maeda, 2008), siven the fact that most of the R5 studies published so far found
statistically significant relationships of one or more variables to the reliahility coefficients.
As the psychometric theory predicts, several moderators associated to the variability of
test scores have shown a statistically significant relationship with the reliahility
coefficients in many RS studies {e.g., standard deviation of test scores, type of population
from which the sample subjects were recruited) and, for this reason, it has been argued
that predictive models of the heterogeneity hetween reliability coefficients should always
include some of them {Botella & Fonte, 2011). Other moderators which have proved a
sighificant relationship with the reliability coefficients in previous RG studies are related to

the testversion {e.g., test length or original vs. adapted version].

Wwhen one or more predictors are included in the model, it hecomes necessary to
estimate the regression coefficients and, depending on the transformation applied to the
reliahility coefficients, these estimates will change to some extent. Also, a new estimate of
the (now residual) heterogeneity variance, which reflects the amount of variability on the
coefficients not accounted for by the moderators incorporated to the model, is required
to he included into the weighting factor of mixed-effects analyses. As shown in Section 2.2
of this dissertation, different procedures are available to compute that estimate, and the

estimator of choice might have an influence on the results.

Apart from this, statistical tests for the regression model coefficients are required
to test the association of some moderator(s) with the reliahility estimates. The method
traditionally computed in R3 meta-analyses for addressing that issue, which was
presented in Section 2.2.1 of this dissertation, has been criticized in the last years, since its
performance is strongly dependent on the accuracy of the variance estimates ( Brockwell
& Gordon, 2001). The correction proposed by Knapp and Hartung (2003), also mentioned

in Section 2.3, has not heen employed yet in any published RG meta-analysis, and it
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should be interesting to assess its performance in order to determine whether its

implementation in the RG context is advisable or not.

6.2 Chjectives, previous simulation studies, and hypotheses

6.2.1 Objectives of the study

Since various methodological alternatives are available when fitting mixed-effects
meta-regression models in the RG approach, the aim of the present study was to compare
the performance of different combinations of methods under some realistic scenarios in

RG studies, by means of Monte Carlo simulation. Specifically:

» Two estimators of the residual heterogeneity variance, DL and REML were
compared. Both procedures were presented in Section 2.2. The DL estimator has
heen almost the only procedure employed so far in R studies assuming a random-
effects model, while the REML estimator constitutes a reasonable alternative
hecause of its appropriate performance in previous simulation studies (cf.

Viechtbauer, 2005; see also Chapter 4 of this dissertation).

» Two methods for testing the significance of the model regression coefficients,
standard and untruncated Knapp-Hartung procedures, were incorporated. The
former has been the only method employed by RG meta-analysts up to date, while
the latter represents an appealing alternative provided its good performance in
previous simulation studies using different effect size indices (Knapp & Hartung,
2003; Sidik & Jonkman, 2005a; see also Chapter 5 of this dissertation). Both

methods were also described in Section 3.3,

*  Four outcome variahles for RG studies were considered, including untransformed

alpha coefficients, Fisher's £, Hakstian-Whalen, and Bonett's transformations. All
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of these outcome variables were presented in Chapter 2. Since all of them have
heen employed in the RG literature, another ohjective of the present study was to
determine whether the transformation choice might have an influence on the

results.

The combination of these procedures led to 16 methodological alternatives. Bias
and efficiency were studied for the different estimation methods of the model regression
coefficients, and the empirical Type | error and statistical power rates of their
corresponding  significance tests were then compared for all methodological
comhbinations. Regarding outcome variables, coefficient alpha is the most widely reported
reliahility measure in primary studies and, since mixing different types of reliahility
coefficients is not appropriate (cf. Rodriguez & Maeda, 2006), most R3 studies published
s0 far have employed coefficient alpha as the main dependent variable. Consequently, the
simulation study presented along this chapter employed alpha coefficients {transformed

or untransformed) as the dependent variable.

6.2.2 Previous simlation studies

A few simulation studies have been already conducted in the RG meta-analytic
approach. Mason et al. {2007) carried out a simulation study comparing the performance
of different methods in mixed-effects models. However, the dependent variable in their
study was the testretest correlation instead of the alpha coefficient. Also, while these
authors focused on the efficiency of the different methods included for estimating the
model slope, in the present simulation hias, empirical Type | error and statistical power

rateswere also considered as comparative criteria.

Another simulation study was carried out by Feldt and Charter {2008]), who

compared different approaches for averaging internal consistency coefficients, some of
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them incorporating either the Fisher's £ or the Hakstian-Whalen transformations. Lopez-
Fina and colleagues {2012} focused on the overall reliahility estimate as well in their
simulation study, comparing several procedures considered by Feldt and Charter (2008)
under more realistic scenarios. A limitation of the Feldt and Charter's (2006) and Lopez-
Pina et al.’s (2012) studies is that they applied a fixed-effect model, instead of a random-
effects one. Also, Bonett's transformation was employed in some recent simulation
studies {Bonett, 2010; Romano & Kromrey, 2009). In the present study, Fisher's Z,
Hakstian-“Whalen, and Bonett's transformations for the reliahility coefficients were
included. Romano, Kromrey, and Hibbard (2010} also considered all transformations in
their simulation study, although these authors assessed the performance for computing
confidence intervals around the average reliahility estimate. Lastly, Enders {2004) applied

the Monte Carlo to the problem of handling missing data.

6.2.3 Hypotheses of this study

Regarding the hypotheses of the present study, it was expected that:

1. The residual heterogeneity variance estimator would not affect the results for the
different methods, as found in previous studies (Sanchez-Meca & Marin-Martinez,

2008; see also Chapter 5 of this dissertation).

2. The alternatives including the Knapp-Hartung correction would perform hetter
than the ones combined with the standard method in terms of empirical Type |
error rate, as reported by the authors in their seminal paper (Knapp & Hartung,

2003).

2. The transformed methods would outperform the untransformed ones, especially

when comparing the empirical Type | error and statistical power rates for the slope
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tests, which are supposed to be more affected when the normality assumption is

not met.

4. The transformed methods recommended for alpha coefficients (Hakstian-Whalen
and Bonett's transformations] would perform better than Fisher's Z for the

estimation and statistical testing of the meta-regression slopes.

6.3 An illustrative example

An example is presented here in order to illustrate the 16 resulting methods after
combining four alternatives for transforming the reliahility coefficients ({including
untransformed reliahility coefficients), two residual heterogeneity variance estimators,
and two methods for testing the regression coefficients. Data for the example were
extracted from an R3 study about the Hamilton Rating Scale for Depression (Lopez-Fina et
al., 2009), and are presented in Table 5.1. Considering the samples for which the 17-item
version was administered, a meta-regression model was fitted using each one of the

proposed methods, with the standard deviation from each sample’s scores, 57),, as the

predictor, and the untransformed coefficient alpha, &., as the dependent variable.

Most of the reliability estimates were over the 0.7 boundary proposed by Nunnally
and Bernstein (1994; see also Chapter 2 of this dissertation), with the exception of the
estimate reported by Bent-Hamsen and colleagues (2002). Moreover, The Hamilton Rating
Scale for Depression was applied to samples which ranged between 22 and 921 subjects,

and the standard deviations of the total scores took values between 2 and 7.51.
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Tahle 6.1 Data from the RG meta-analysis conducted by Lopez-Fina et al. (2009)

Study N. & 30
Addington, Addington, Maticka-Tyndale, and Joyce (1992)a 500 660 4.28
Addington, Addington, Maticka-Tyndale, and loyce (1922]h 100 JF70 7.10
Akdemir et al. {2001) 94 G50 6.89
Eent-Hamsen et al. {2003} 230 A20 2.00
Eohes et al. (2003) 165 G40 5.60
Kohak and Reynolds (2000) 921 897 7.51
Leidy, Palmer, Murray, Robh, and Revicki (1998) 48 860 6.32
Ramos and Cordero [1988) 135 JF70 5.10
Rapp, Smith, and Britt (1920} 150 830 6.01
Reynolds and Mazza (1998) 29 850 5.74
Riskind, Beck, Brown, and Steer {1987) 120 JF30 6.84
Rush et al. {1986} 289 200 710
Rush et al. {2003} 552 BED 3.00
Stage, Middelboe, and Fisinger (2003} 49 850 7.10
Thunedborg, Black, and Eech (1995) 23 835 5.74

Tahle 6.2 presents the estimates for the model slope and the p-values for its
statistical significance from each single analysis. When some transformation was applied

on the reliability coefficients, the slope estimates were hack-transformed. Taking the
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comhbination of untransformed reliahility coefficients with DL estimator as a reference, the

regression egquation was:

Y. =0.594+003268D,

Tahle 6.2 Slope estimates and associated p-values from the example

DL REML
By Psro Pru By Psto B
Raw alpha coefficients 0326 064 118 0339 079 07
Fisher's Z 0442 257 141 0431 40 47
Hakstian-Whalen 0424 JAs2 25 0412 JA16 12
Bonett 0441 284 61 0431 A58 66

By slope estimate. DL, REML: DerSimonian and Laird and Restricted Maximum Likelihood estimators for

the residual heterogeneity variance. p o ¢ pvalues corresponding to the standard methed and the

Knapp-Hartung correction for testing the regression coefficients, respectively.

Regarding the results with the 16 procedures, the slope estimates were around
.023 when the untransformed reliahility coefficients were employed as the dependent
variable, and values over .04 were obtained when using some transformation. P-values for
the slope tests showed important discrepancies depending on the method considered.
Assuming a 95% confidence level, statistically significant results were not achieved in any
case; however, marginally significant results were found when applying the standard
method for testing regression coefficients comhbined with raw alpha coefficients, hoth for
the DL and the REML estimators {p-values of .064 and .079, respectively). Conversely, the

remaining methods provided p-values greater than .10.
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6.4 Simulation study

A simulation was carried out to compare the 16 alternative methods for fitting
mixed-effects meta-regression models presented ahove. The simulation was programmed
in R, using metafor (Viechthauer, 2010) and MOMCpock {Martin, Quinn, & Park, 2011}
packages. This simulation was conducted under the Classical Test Theory framework
{Gulliksen, 1987), hecause most of the tests chosen in previous RG studies were made

hased on that theoretical approach.

Regarding manipulated factors in this simulation, sample sizes, N, were

generated from a log-normal distribution with a mean value of 150 participants. The
asymmetry of the sample size distribution was one of the conditions manipulated, with
values of +1, +2, and +3, according to empirical asymmetry values ohserved in previous RG
databases {e.g., Botella, Suero, & Gambara, 2010; Lopez-Pina et al.,, 2009; Sanchez-Meca
et al., 2011). Also, the number of studies for each meta-analysis, &, was set to values of
15, 20, and 60. Lastly, for the slope parametric value, two different scenarios were
considered: for the first set of conditions, a predictor variable was generated from a

distribution N({],l) with no relationship to the reliability coefficients, so that the expected
value for the slope was 0; for the second scenario, the error component in the test scores
was generated as a function of that predictor, leading to a mean empirical slope, EI , of

01248 for all conditions (values hetween .01246 and .01350).

A key aspect in the simulation was the computation of the parametric coefficients
alpha. In a first step, population test scores for each study were generated. Considering
settings described in previous simulations { Bonett, 2010; Botella & Suero, 2012), a 20-item
test was defined. For the calculation of each parametric coefficient alpha, a population of

10,000 subjects was defined. True scores for each of the 20 items, 1., were generated
from a multivariate normal distribution with mean 0, variance 2 for each item and
covariance 0.4 for any pair of items. This provided a (lﬂ,ﬂﬂﬂx 2{]} matrix of true scores for
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each study. Then, error scores for each item, ¢, were generated from a normal
distribution with mean 0, the variance changing from one study to the next due to the
predictor value, with a range between .1 and 1.9. This resulted in another {ID,DGDKZD]
matrix of error scores for each study. The ohserved scores for each of the 10,000 subjects

in the gth item, x, , were calculated with the expression (Crocker & Algina, 1986)

20
Finally, scores for each subject in the whole test were computed as x, =Zx3q .The
g=I

parametric alpha coefficients, ¢, were computed from the database of 10,000 subjects

generated for each study.

In a second step, samples of A, subjects were taken from the respective

populations, and the empirical alpha coefficients, the three proposed transformations,
and their respective sampling variances were computed with the formulae presented in
Section 2.2 of this dissertation. This process — generating a database of 10,000 subjects

and then exiracting a sample of N, of them —was replicated & timesin order to simulate

the data corresponding to the & studies in an RG meta-analysis.

Once obtained the sample reliahility coefficients and within-study variances for the
k studies, results for each meta-analysis were obtained by fitting mixed-effects meta-
regression models for the 16 statistical alternatives under comparison. For each condition,

10,000 meta-analyses were computed.

Regarding comparative criteria, the hias and the mean square error (MSE) for the
sope estimates were firstly computed in the conditions where £, = ( for each one of the
2 combinations (4 transformation methods x 2 residual heterogeneity variance

estimators), providing different estimates of the model coefficients. When some
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transformation was applied on the reliahility coefficients, the slope wvalues were back-
transformed using the procedure described in  Eguation (2.17). Mathematical

computations required for obtaining hias and MSE are provided below.

Let 3,’“ he the slope estimate obtained with any of the proposed methods, and
hack-transformed to the reliability coefficients metric where necessary. The average of

-

5" for any given condition was computed with { Marin-Martinez & Sanchez-Meca, 2010)

-

Y

AVE[’E'M ) 10,000

(6.1)

Then, hias was obtained with
BIAS[ﬁ,’“)= AVE[B;" )— B, (6.2)

where E, is the average of the empirical parametric slopes obtained along the 10,000

meta-analyses. On the other hand, ME was calculated with

MSE(gr)=———— (6.3)

Finally, the proportion of rejections of the null hypothesis £ =0, assuming a 95%

confidence level, was computed for all 16 combinations. That led to compare the different

methods in terms of empirical Type | error rates for conditions where 5, =0, and in terms

of statistical power rates when 8 =0.
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6.5 Results

In order to illustrate the general trends of the simulated data, some descriptive
statistics are presented in Table £.3. Descriptives from the observed scores, x,, were
ohtained after generating a database of 1,000,000 scores. Next, data from 1,000 studies
were simulated with an asymmetry index of 2 for the sample size distribution, computing

for each study the score variance, Sfr , and coefficient alpha estimate, ¢, .

Tahle 6.2 Descriptive statistics from the simulated data

Statistic X, 5; .
Minimum -F0.501 | 106.576 0.481
Maximum 65.646 | 32878 0.818

Mean 0.003 212.211 0.719

Median -0.007 | 210.236 0.720
Variance 211.966 | 796.081 0.001
Skewness 0.003 0.273 -0.989

Kurtosis 0.004 1.154 4523

In the remainder of this section, the different methods described above will be
assessed by means of the comparative criteria considered in the Monte Carlo simulation.
Firstly, the accuracy of the slope estimates will be compared for the eight methodological
alternatives (after combining four ftransformation methods and two residual
heterogeneity variance estimators), in terms of hias and MSE. Then, the performance of

the slope statistical tests will be assessed for the 16 available alternatives {as a result of
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comhbining the 2 previous methods either with the standard method or with the Knapp-

Hartung correction], in terms of empirical Type | error and statistical power rates.

6.5.1 Accuracy of the sfope estimates

Tables 6.4 and 6.5 present hias and MSE results, respectively, for the eight

estimators of the meta-regression model slope. In order to facilitate their interpretation,

values on hoth tables were multiplied by 10,000, so that the reference slope value is now

124.8.

Tahle 6.4 Bias in the slope estimates for the different combinations of methods

k 15 30 60
Asvemetry 1 2 3 1 2 3 1 2 3
Raw alpha DL 2517 | -0.587 | -1.847 | -1.962 | -1.158 | -0.66% | -2.235 | -1.999 | -1.141

coefficients

REML | -2.552 | -0.605 | -1.8B02 | -1.972 | -1.138 | -0.6d6 -2.238 | -1.298 | -1.138
Fisher’s Z DL 2904 | -1.665 | -2.412 | -1.659 | -0.852 | -0.283 -1.401 -1.433 | -0.6608
REML | -2.902 | -1.611 2400 | -1.660 | -0.848 | -0.275 -1.401 -1.434 | -0.678
Hakstian- DL -3.184 | -1.75F | -276F | 2174 | -1.412 | -0.912 -2.129 | -2.071 | -1.305

Whalen
REML | -3.203 | -1.719 | -2.738 | -2.183 | -1.417 | -0.895 -2.130 | -2.071 | -1.314
Bonett DL -3.850 | -2.636 | -3.460 | -2.557 | -1.773 | -1.248 -2.297 | -2.309 | -1.555
REMIL | -3.873 | -2.534 | -3.363 | -2.565 | -1.787 | -1.281 -2.298 | -2.318 | -1.550

k i number of studies, Asyrvneiry: skewness of the sample size distribution, DL and REML: DerSimonian and

Laird and Restricted Maximum Likelihood estimators for the residual heterogeneity variance.
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Results in Table 5.4 show that all conditions provided negatively hiased estimates
of the slope parameter, although that hias was smaller than 2% for any combhination of
methods. Results were very similar and showed identical trends regardless of the residual
variance estimator, but some differences were ohserved depending on the transformation
method. Specifically, Bonett's transformation systematically showed the highest hias
rates, with the largest percentage of hias, around -2.9%, when both the asymmetry in the
sample size distribution and the number of studies were small. In contrast, raw alpha
coefficients provided hias results slishtly smaller than the methods involving some
transformation of the reliability coefficients when the asymmetry was small, while the
Fisher's Z transformation led to the smallest hias for larger values in the asymmetry of

the sample size distribution and in the number of studies.

Tahle 6.5 MSE in the slope estimates for the different combinations of methods

Asyrmetry 1 2 3 1 2 3 1 2 3

Raw alpha DL 0545 | L7341 | 7651 | 2900 | 3050 | 3209 ] .1355].1413 ] .1438
coefficients

REML | .6545 | .7341 | .7047 | .28589 | .3049 | .3207 | .1355 ].1413 | .14398

Fisher's Z DL .6344 | .6%63 | 7111 | .2803 | .2842 | .2841 | .1305 | .1339 | .1344

REML | .6344 | .0953 | .7077 | .2803 | .2842 | .2833 | .1305 | .133% ] .1343

Hakstian- DL o301 | 6954 | L7164 | 2778 | .2851 | 2959 ] .1294 | .1333 | .1340
Whalen

REML | .6301 | .6944 | .7123 | .2778 | .2849 | .2947 | .1294 ] .1333 | .1339

Bonett DL .6219 | .6832 | .7006 | .2739 | .2786 | .2882 | .1277 ] .1311 | .1315

REML | .6218 | .0812 | .6935 | .2739 | .2782 | .285%9 | .1277 | .130%9 | .1310

F :number of studies. Asymmefty: skewness of the sample size distribution, DL and REML: DerSimenian and

Laird and Restricted Maximum Likelihood estimators for the residual heterogeneity variance,
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Regarding efficiency, results in Tahle 6.5 show some interesting trends as well.
M5Es were slightly higher for all the methods as the asymmetry values increased, but the
number of studies showed a higger influence decreasing the MSEs for larger values of k.
Again, results were almost identical both for the DL and the REML estimators. Focusing on
the transformation method, however, raw alpha coefficients provided the largest MSEs
along all of the simulated conditions, while the smallest values were ohtained when

applying Bonett's ransformation.

6.5.2 Performance of the hypothesis tests for the slope

Table 6.6 reports the empirical Type | error rates for the different methods under
comparison, while statistical power rates are provided in Tahle £.7. In both tables, only
results for the DL estimator are presented, since rates obtained with the REML were very

similar and fully comparable in terms of the observed trends.

Assuming a 95% confidence level, accurate results for each method should be
around .05 when the slope parametric value is 0. Results presented in Tahle 6.6 show that
the rejection rates for the standard method were clearly under the nominal significance
level, with rates smaller than .01 for the Fisher's Z transformation and around .02 for the
remaining transformation procedures. In contrast, the Knapp-Hartung correction
performed dose to the nominal level for all of the transformation methods and along all

of the simulated conditions.
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Tahle 6.6 Empirical Type | error rates for the slope tests using the DL estimator

Asymmetry 1 2 3 1 2 3 1 2 3

Raw alpha | $TD | .017 | .020 | .021 | .014 | .018 | .020 | .017 | .018 | .021
coefficients

KH | .048 | .053 | .054 | .049 | .050 | .050 | .050 | .053 | .055

Fisher's Z $TD | .006 | .007F | .007 | .006 | .006 | .006 | .005 | .005 | .006

KH | .046 | .04% | .04% ) .050 | .048 | .043 | .048 | .048 | .048

Hakstian- STD | 017 | .020 | 023 ] .017).019 | 019 | .019 | .020 | .021
Whalen

KH | .046 | .049 | .049 | .049 | .049 | .044 | .047 | .0459 ] .048

Bonett $TD | .016 | .020 | .022 | .018 | .020 | .019 | .020 | .020 | .021

KH | .046 | .048 | .04% ) .04% | .047 | 043 | .048 | .048 | .07

k1 number of studies. Asymmetry: skewness of the sample size distibution, $TD and KH: standard method

and Knapp-Hartung correction for testing the regression coefficients,

Regarding statistical power rates, Table 6.7 shows that the lowest rates were
ohtained when combining the standard method and the Fisher's Z transformation. The
Knapp-Hartung correction systematically led to higher power rates than those obtained
for the standard method. Apart from that, all rates increased for larger values of &, while
the asymmetry showed a small inverse relationship with the rates. Lastly, power rates
were slightly higher when the Knapp-Hartung correction was combined with some

transformation of the reliability coefficients.
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Tahle 6.7 Statistical poweer rates for the slope tests using the DL estimator

Asymmetry 1 2 3 1 2 3 1 2 3

Raw alpha | $TD | .266 | .271 | .259 | .561 | .552 | .556 | .884 | .871 | .B75
coefficients

KH | .369 | .363 | .347 | .082 | .6606 | .058 | .942 | .9259 ] .925

Fisher's Z STD | .171 | .170 | .166 | .425 ] .418 | .422 | .B10 | .95 | .799

KH | .368 | .364 | .348 | .084 | .0¥5 | .667 | .942 | .931 | .230

Hakstian- STD | 283 | .282 | .271 | .58F7 ) .577 | .580 | .202 | .890 | .892
Whalen

KH | .370 | .363 | .341 | .685 | .671 | .661 | .943 | .932 | .929

Bonett STD | .284 | .281 | .270 | .586 | .578 | .581 | .901 | .892 | .824

KH | .36% | .362 | .345 | .084 | .074 | .664 | .942 | 931 | .230

F : number of studies. Asymmefry: skewness of the sample size distribution, $TD and KH: standard method

and Knapp-Hartung correction for testing the regression coefficients,

6.6 Discussion

The present study focused on the analyses of continuous moderators by fitting
mixed-effects meta-regression models using alpha coefficients as the outcome variable. In
this study, different procedures for transforming reliahility coefficients were compared
{see Section 2.2 of this dissertation). Extensions of the DL and REML estimators for the
residual heterogeneity variance (presented in Section 3.2} were also assessed, as well as
the standard method for testing the regression coefficients and the adjustment proposed
for Knapp and Hartung (2003) to the former, hoth of them presented in Section 2.2 of this
dissertation. Performance for all the presented methods was compared by means of
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Monte Carlo simulation, where the hias and the MSE for the slope estimates, as well as
the empirical Type | error and statistical power rates for the slope tests, were the

comparative criteria considered.

Out of the different methodological issues implied in the several procedures here
compared, the choice of the residual heterogeneity variance estimator {DL vs. REML])
produced negligible differences in the trends, the changes observed in the results for the
different conditions bheing very small. On the other hand, the transformation method of
the reliahility coefficients exerted some influence on the comparative criteria considered
for this study. Lastly, the method employed for testing the significance of regression
coefficients (standard vs. Knapp-Hartung) showed a critical influence on the empirical

Type | error and statistical power results.

Regarding transformations, in terms of hias, all methods provided negatively
hiased estimates of the regression coefficients, although raw alpha coefficients showed
results slightly better than the ones obtained when applying some transformation,
especially when the asymmetry in the sample size distribution was small. Conversely,
M5Es were higher for untransformed reliability coefficients than for any of the
transformed methods. Howewver, since hias results were alvways smaller than 3% regarding
the slope parameter, and MSE values were also small and very similar from one method to
another, the conclusion should he that all four transformation methods performed
reasonably well in terms of hias and efficiency. Also, from a conceptual point of view,
Fisher's Z transformation should not be used with coefficients alpha, as that
transformation is only appropriate when the reliahility coefficients were computed as a
Pearson correlation coefficient (e.g., test-retest reliability). Therefore, for coefficients
alpha Hakstian and \Whalen’s (1976) and Bonett's {2002) transformations should he

selected.

Considering now the two methods here included for testing the model coefficients,

compared to the standard method, the Knapp-Hartung correction provided empirical Type
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| error rates closer to the nominal significance level, performing almost nominally for all
comhbinations and under all of the simulated scenarios. Regarding statistical power, the
Knapp-Hartung correction showed higher power rates than the standard method
regardless of the rest of conditions manipulated. These power rates were slightly higher
when the Knapp-Hartung correction was combined with some transformation of the
reliahility coefficients. However, a noteworthy finding is that, when integrating 15 or 20
coefficients alpha, as it was the case for some previous RG studies, power rates were
considerably lower than the .20 boundary recommended by the scientific community
{Cohen, 1992). Thus, having a moderate to large numhber of reliability coefficients seems

to be an important requirement when conducting moderator analyses in RG studies.

6.7 Usefulness and limitations of the findings presented in this

chapter

The present simulation study showed that, when fitting mixed-effects meta-
regression models with one covariate, the slope estimates can be negatively hiased,
although usually that bias is not large enough to represent a threat to the results. Also,
despite MSEs for these estimates were smaller when some transformation on the
reliahility coefficients was applied, results were very similar when comparing different
transformation methods, and MSEs decreased noticeably as the number of reliahility
coefficients increased. These results therefore suggest that all ransformation methods
here compared perform similarly in terms of bias and efficiency of the model slope
estimates, so that researchers conducting R5 studies should pay more attention to some

other criteria before making their decisions about the statistical methods implemented.

In contrast to the previous statement, significance tests for the slope did show
important differences along the methodological alternatives compared here. According to

results here presented, RG researchers should take into account that testing the model
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coefficients with the standard method may lead to a loss of statistical power, as Tahle 6.7
reflects, so that some moderators of the variahility hetween reliability coefficients might
not be identified in their RG studies unless they are integrating a large number of
reliahility coefficients. The Knapp-Hartung correction outperformed the standard method
in terms of statistical power, with rates systematically greater than those obtained with
the standard method, and showed empirical Type | error rates closer to the nominal

significance level.

Regarding limitations of the methods included in the present study, the fact that
only mixed-effects models were considered here might be seen as problematic, since
some other options are present in published RG studies. However, the purpose of this
chapter was not to assess the methodological choices implemented up to date, but rather
to compare the best methodological alternatives for future studies, hased on the main
ohjectives in an RG study itself and on the current statistical alternatives to accomplish
them. Since reliahbility is not a stable property for a given psychometric instrument (e.g.,
Crocker & Algina, 1986; Gronlund & Linn, 1920}, the RS approach was proposed by Vacha-
Haase (1998} as a way to integrate a set of reliahility estimates from different applications
of a test, and to guide expectations of potential test users about reliability with their
sample characteristics and their administration context. That implies generalizing results
to some other scenarios not necessarily identical to the ones accounted for in the RS
study, and only random-effects models allow researchers for making such generalizations
{cf. Beretvas & Fastor, 2003; Borenstein et al., 2010; Hedges & Vevea, 1998; Raudenhbush,
2009; Sanchez-Meca, Lopez-Lopez, & Lopez-Fina, in press; Schmidt et al,, 2009). Assuming
a random-effects model when conducting moderator analyses leads to mixed-effects
models, as the ones here presented. In addition to inverse variances, sample sizes can also
he considered as random-effects weights. However, results are not expected to he
influenced by the choice of weights in a random-effects model, but rather by the

transformation method in the coefficients (Mason et al., 2007).
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Also, as in any simulation, conditions manipulated in this study cannot account for
the whole universe of scenarios present in RG studies already carried out or to he done in
the future. As an illustration of that, some RG studies have integrated larger numbers of
sampling reliahility estimates than the ones considered here {e.g., ¥in & Fan, 2000}, and
similar results to the ones presented here for 60 studies should be expected with smaller
M5Es and an additional gain of statistical power. Moreover, generating sample size values
from a log-normal distribution may be a reasonable approximation to the real situation in
many RG meta-analyses (Mason et al, 2007), where most of the primary studies used
small to moderate inpatient samples while a few ones applied the test as a screening
instrument to large samples from general population. Increasing the asymmetry of the
sample size distribution produced slighthy higher MSEs and smaller statistical power rates,

although that factor did not show a big influence on any of the criteria compared here,

Finally, the use of coefficient alpha in this simulation study, as well as in most of
the RG studies published up to date, leads to some noteworthy considerations. As Graham
(2008) remarked, coefficient alpha is based on the essentially tau-eguivalent
measurement model. This implies that, when a coefficient alpha is computed, it is
assumed that all items measure the same latent trait, although probably with a different
degree of precision. Researchers estimating reliability with coefficient alpha, or retrieving
alpha coefficients for carrying out an RG study, must he aware of this assumption, because
its violation would directly affect the validity of the reliahility estimates for a given test.
The generating process of the item scores in the present simulation, which was detailed

above, fulfilled the requirements of the essentially tau-equivalent measurement model.

The R approach weas recently proposed {(Vacha-Haase, 1998}, with the aim of
applying a methodology for guantitative synthesis, meta-analysis, to the purpose of
ohtaining a representative reliability value along different administrations of a given test,
as well as identifying which factors can explain variability across the set of reliahility

estimates. The latter objective implies carrying out moderator analyses, and different
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alternatives for addressing that issue are available to the meta-analyst. Results of this
study mainly suggest that, when a mixed-effects model is assumed for the moderator
analyses in an RG study, the Khapp-Hartung correction for the statistical test of the model
coefficients provides rates doser to the nominal significance level regarding Type | error,
and higher power rates than the ones obtained for the standard method. Performance for
that correction seems then promising in the RG approach, where it has not been applied

up to date.
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Chapter 7

Conclusions

Meta-analysis constitutes a great improvement to traditional, non-gquantitative
syntheses in terms of precision, reliability, and validity (Cooper & Hedges, 2009b). Since it
was firstly proposed by Gene V. Glass {1976), this methodology has heen improved and
widely applied in many different fields such as Behavioral, Health, and Eiological Sciences
{e.s., Cooper et al., 2009; Marin-Martinez et al., 2002). In a meta-analysis, each study is
usually weighted by a function of its precision (e.g., Pigott, 2001). When the results from a
set of individual studies are found to he discrepant, meta-analysis allows the researcher to
search for moderating influences that can explain part of that variahility. And, as it was
shown in Section 1.3, such moderator analyses can be conducted by fitting mixed-effects

regression models.

In Chapter 2 of this dissertation, the different methods available when estimating
and testing the most relevant parameters in mixed-effects meta-regression models were
presented. One of these parameters is the residual heterogeneity wvariance, which

represents the amount of unexplained heterogeneity among the individual outcomes
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different to sampling error after adding one or more moderators to the model
{Viechthauer, 2008). Seven estimators of that parameter were presented in Section 3.2,
Since the residual heterogeneity variance is included in the weights for meta-regression
analyses when assuming a mixed-effects model, obtaining accurate estimates of this
parameter constitutes an important issue. One of these analyses is the significance test of
the moderator(s] included in the model, and six alternative methods to accomplish that
ohjective were described in Section 2.2, Finally, for the estimation of the predictive power
of these models, the proposal of Raudenbush {1994), which is based on the re-estimation
of the heterogeneity variance after including predictors in the model, was detailed in
Section 2.4. The fact that seven heterogeneity variance estimators are available leads to
{at least) seven different ways for the calculation of the predictive power in meta-analytic

models.

Given the amount of alternatives available to the meta-analyst when fitting mixed-
effects meta-regression models, a first broad objective in this dissertation was to analyze
the extent to which they can lead to different results, in order to determine which ones
are preferred under a given scenario. With this aim, three simulation studies were
conducted, and each one of them accounted for a wide variety of conditions that can he
regarded as realistic in Psychology and related fields. A second {general) objective in the
present dissertation was to check whether there are conditions under which the method
choice does not make any difference on the results. On the one hand, no method was
expected to perform appropriately for the most adverse scenarios. On the other hand, all
methods were expected to converge (and to provide accurate results) for the optimal

conditions.

The first simulation study, presented in Chapter 4, found some differences among
the performance of the different heterogeneity variance estimators, which showed similar
trends for both random- and mixed-effects models. On the one hand, the Hunter-Schmidt

{H%), maximum likelihood (ML), and Sidik-lonkman (%)) methods provided negatively

142



hiased estimates of the heterogeneity wvariances, while the Hedges {(HE) method was
unhiased hut less efficient than the remaining estimators. On the other hand, the
CerSimonian-Laird (DL), restricted maximum likelihood (REML), and empirical Bayes (EB)
estimators showed better results, although a negative hias was found with the former for
large parameter values. It seems, then, that REML and EB estimators constitute suitable
options for the estimation of the heterogeneity variance parameters in meta-analytic
models. The number of studies exerted a hig influence on the results, and no method
performed accurately with less than 20 studies. Conversely, precise estimates were
obtained with 80 studies regardless of the method employed and the remaining

manipulated factors.

An additional goal of the study presented in Chapter 4 was to analyze how the
different methods perform for the estimation of the predictive power in mixed-effects
meta-regression models, using the method proposed by Raudenbush (1994]). Again, the
HS, ML, S, and HE methods did not provide satisfactory results, and the hest performance
was exhibited by the DL, REML, and EE methods, with the latter showing hetter properties
when examining the bhias, truncation rates, and efficiency criteria jointly. The number of
studies also exterted the greatest influence on the accuracy of all methods, and at least 40

studies were required to ohtain precise estimates.

The second simulation study, described in Chapter 5, compared the performance
of different methods to test for moderators in mixed-effects meta-regression models. The
heterogeneity variance estimator did not show any influence in this case, but some
discrepancies were ohserved depending on the method implemented to test the
statistical significance of the regression coefficients. In previous works, it has been argued
that the standard, Wald-type method for testing the coefficients in these models does not
account for the fact that the variances need to be estimated in meta-analysis, leading to

suboptimal results (e.g., Hardy & Thompson, 1996; Henmi & Copas, 2010]. When
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examining its performance in this study, the standard method did not adequately control

the Type l error rate, leading to incorrect rejections of the null hypothesis.

Out of the different alternatives to the standard method examined in Chapter 5,
the method proposed by Knapp and Hartung {20032) appeared as a suitable option,
hecause of its simplicity and its appropriate empirical Type | error rates. It is worth noting,
though, that this method showed a better performance without the truncation proposed
by the authors, which led to a loss of statistical power. The Huber-White and likelihood
ratio tests, which were also examined, did not show an appropriate control of the Type |
error rate. Finally, the permutation test performed similarly to the untruncated Knapp-
Hartung method. Although the latter should he preferred for most situations hecause of
its simplicity, the permutation test constitutes a suitabhle option for scenarios where no
random sampling of studies can bhe assumed {Manly, 1997). Nevertheless, ahout 40
studies were required for the different methods to achieve power rates around 0.80, as

recommended by Jacoh Cohen {1992).

The studies presented in Chapters 4 and 5 hoth focused on a normally distributed
outcome, the standardized mean difference. Conversely, the last simulation study,
presented in Chapter 6, explored some alternative outcome variables in meta-analysis
within the reliability generalization framewrork. In this study, several methods to estimate
the model coefficients and to test for moderators were compared. Regarding the outcome
variahles, coefficient alpha, which has an asymmetric sampling distribution, was employed
together with three normalizing transformations. The results only showed slight
discrepancies among the different outcome variables. Regarding the statistical methods to
test for moderators, the trends were similar to the ones described in Chapter 5, with the
residual heterogeneity variance estimators providing almost identical results and the
Knapp-Hartung method outperforming the standard, Wald-type test both in terms of
empirical Type | error and statistical power rates. Again, more than 20 studies were

necessary hefore the methods reached satisfactory power rates.
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If the findings from the three simulation studies are interpreted jointly, then the

following conclusions are applicable to mixed-effects meta-regression models:

1. The heterogeneity variance estimator will not exert an important influence on the

analyses when testing the significance of the model coefficients.

2. The heterogeneity variance estimator will have an influence on the results when
estimating the predictive power of the model with the procedure proposed by
Raudenhbush {1994]), and the REML, DL, and {especially) the EB estimators are

expected to provide the most accurate results,

3. The method for testing the model coefficients will have an influence on the results,
with the {untruncated) Knapp-Hartung method providing the most accurate results
for most situations. If no random sampling of studies can be assumed, then a

suitable option is to compute a permutation test.

4. About 40 studies are required to get accurate results in these models. With a

smaller number of studies, the results should be interpreted cautiously.

5. Conclusions 1, 3, and 4 also hold when dealing with outcome variables that are not

normally distributed {e.g., when integrating untransformed coefficients alpha).

Finally, some limitations of this dissertation, which also constitute perspectives for
future research in the context of mixed-effects meta-regression models, must be

remarked:

®» The condusions of this dissertation are restricted to the conditions manipulated
along the three simulation studies here presented. Indeed, very interesting
findings can he expected by carrying out additional simulation stdies with some

other conditions not included in this dissertation.
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The simulation study here presented that compared the performance of different
heterogeneity variance estimators, as well as the previous studies mentioned in
Chapter 4, was conducted on the hasis that the normality assumption of the
parameter effect sizes distribution is met. However, it does make sense to suspect
that this critical assumption might not be satisfied in some practical situations, and
it should be interesting for future studies to analyze how this circumstance affects

the performance of the different methods.

This dissertation includes the first systematic study of the Raudenbush’'s {1994)
proposal for the estimation of the predictive power in mixed-effects meta-
regression models, but it only accounted for normally distributed outcomes,
namely the standardized mean difference. It should be interesting to analyze how
the employement of outcome wvariables with asymmetric distribution, such as

coefficient alpha, might affect the results and modify the patterns here reported.

The procedure proposed by Raudenbush {1994) is considered as an appropriate
way to compute the predictive power in meta-analytic regression models, but
some other alternatives to accomplish this objective might he explored as well in

the future.

Some alternative methods for testing the model coefficients have heen recently
proposed (Friedrich & Knapp, 2011, August; Guolo, 2012; Huizenga et al., 2011]),
and it should be interesting to check whether these methods can improve the

results yielded by the {untruncated) Knapp-Hartung and permutation tests.
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